
Test Techniques For The
Test Analyst

Drs. Erik van Veenendaal

EuroSTAR
eBook Series

MAY 2018

About The Author
Drs. Erik van Veenendaal, CISA is a leading international
consultant, trainer and a recognized expert in the area of
software testing and requirement engineering.

Erik is the (co-)author of numerous papers and a number of
books on software quality and testing. He is a regular speaker,
e.g., running a tutorial on test design techniques, at both
national and international testing conferences and a leading
international trainer in the field of software testing.

Since its foundation in 2002, Erik has been strongly involved in
the International Software Testing Qualifications Board (ISTQB).
From 2005 to 2009, he was the vice president of the ISTQB
organization; he currently is the president for the Curaçao
Testing Qualifications Board (CTQB).

Erik is one of the core developers of the TMap test
methodology and the TMMi test improvement model, and
currently the CEO of the TMMi Foundation.
For his major contribution to the field of testing, Erik received
the European Testing Excellence Award (2007) and the ISTQB
International Testing Excellence Award (2015).

Abstract
Test techniques have been around for many years. They are
used explicitly or implicitly by most testers. There are many
sources of information with respect to test techniques, their
methods and coverage measures. It is not the intention of this
e-book to completely repeat or re-iterate such information. This
e-book intents to provide a to-the-point overview of the most
popular test techniques. This overview will support the test
technique selection process when determining a test strategy
or test approach. It also looks at a number of reasons why we
should consider the use of test techniques as a part of our
everyday test activities and who should be looking to use them.

Specification-based test techniques have a more-or-less
standard procedure for deriving test cases from requirements
documents. For each specification-based technique
described, a list of characteristics is provided and the level of
(requirements) coverage that can be achieved is discussed.

Experience-based testing, e.g., exploratory testing, is a
powerful approach to testing. In many situations, it has shown to
be very productive. There isn’t a tester yet who didn’t, at least
unconsciously, perform experience-based testing at one time or
another. The three most popular experience-based techniques
are described in this e-book.

Twitter: @ErikvVeenendaal
www.erikvanveenendaal.nl

Skill Level
This eBook is for an
audience of all skill levels.

https://twitter.com/ErikvVeenendaal

Test Techniques for the Test Analyst Page 1

Test Techniques
for the Test Analyst

by Erik van Veenendaal

This e-book is dedicated to Paul Quik, a dedicated, passionate,
enthusiastic and professional tester, but above all a wonderful person,
husband and father.

Test Techniques for the Test Analyst Page 2

Table of Contents
1. An introduction to Test Techniques…………………………………………………………….…………………………3

1.1 Different types of Techniques ………………………………………………………………………………….3

1.2 Agile………...6

2. Specification-Based Techniques……………………………………………………………………………………….…….8

 2.1 Introduction…….….8

 2.2 Equivalence Partitioning……………………………………………………………………………….………..10

 2.3 Boundary Value Analysis…………………………………………………………………………………………14

 2.4 Decision Table Testing…………………………………………………………………………………………….16

 2.5 Cause-Effect Graphing…………………………………………………………………………………………….21

 2.6 State Transition Testing………………………………………………………………………………………….24

 2.7 Combinatorial Test Techniques………………………………………………………………………………29

 2.8 Classification Tree Method………………………………………………………………………………….….31

 2.9 Pairwise Testing……………………………………………………………………………………………….…….34

 2.10 Use Case Testing……………………………………………………………………………………….….………40

3. Experience-Based Techniques………………………………………………………………………………………………43

 3.1 Introduction………43

 3.2 Error Guessing……………………………………………………………………………………………….…….…44

3.3 Checklist-based testing……………………………………………………………………………….………….47

3.4 Exploratory testing…………………………………………………………………………………………………49

References………...57

The Complete Book “The Testing Practitioner”……………………………………………………………………….58

Test Techniques for the Test Analyst Page 3

Test Techniques for the Test Analist

Test techniques have been around for many years. They are taught as part of ISTQB classes and
are used explicitly or implicitly by most testers. There are many sources of information with
respect to test techniques, their methods and coverage measures. It is not the intention of this e-
book to completely repeat or re-iterate such information. This e-book intents to provide a to-the-
point overview of the most popular test techniques. This overview will support the test technique
selection process when determining a test strategy or test approach. It also looks at a number of
reasons why we should consider the use of test techniques as a part of our everyday test activities
and who should be looking to use them.

Specification-based test techniques have a more-or-less standard procedure for deriving test
cases from requirements specification and design documents. For each specification-based
technique described, a list of characteristics is provided and the level of (requirements) coverage
that can be achieved is discussed. Also, for each technique the specific test case design procedure
is briefly described with an example.

Experience-based testing, e.g., exploratory testing, is a powerful approach to testing. In many
situations, it has shown to be very productive. There isn’t a tester yet who didn't, at least
unconsciously, perform experience-based testing at one time or another. The three most popular
experience-based techniques are described in this e-book.

What you wil learn
After reading this e-book the reader will be able to:
• Explain the most popular specification-based and experience-based test techniques
• Understand the key characteristics for the various test techniques
• Recall the procedure for deriving test cases using a specification-based testnique
• Compare specification-based techniques to experience-based techniques
• Recommend the most appropriate test techniques in a specific situation.

The e-book is based on a number of chapters from the book The Testing Practioner by Erik van
Veenendaal.

1. An introduction to Test Techniques

1.1 Different types of Techniques

In this e-book we will look at the different types of test design technique that are commonly used
by the test analyst, how they are used and how they differ. Two types or categories of test
techniques are distinguished by their primary source: a specification, or a person’s experience.
Both categories are useful and highly complementary.

There are many different types of test techniques, each with its own strengths and weaknesses.
Each individual technique is good at finding particular types of defect and often relatively poor

Test Techniques for the Test Analyst Page 4

at finding other types. For example, a technique that explores the upper and lower limits of a
single input range is more likely to find boundary value defects than defects associated with
combinations of inputs.

According to the Oxford English Dictionary a technique is a:

- mode of artistic execution in music, painting, etc.
- mechanical skill in art
- means of achieving one’s purpose, esp. skilfully.

Software testing has been referred to as an “art”, amongst other things, for many years. Perhaps
parts two and three of the dictionary definition should be combined to reflect the current state
of the testing industry. Test techniques, at least some, make part of the exercise mechanical in
that the production of the test cases becomes formalised. However, the overriding need for test
techniques, is the need to achieve our purpose. The purpose being; to provide objective and
measurable tests, find defects and results to allow users to make a well-founded decision about
the likely impact of taking the system into live operation.

What subset of all possible test cases has the highest probability of finding most defects? [Myers].
Well, that’s a loaded question if ever there was one! Although Myers’ book was published in 1979
many others probably asked that question well before that time and certainly many thousands
have asked it since. The testing fraternity are still trying to answer it. However, it may well be
that there is no definitive objective answer! The question has an implicit measure within it; in
that “subset” implies that testers cannot/will not/should not even try to run every possible test
case, even if they have been able to identify them. That being the case, the very simple question
requires a very complicated answer, within which there will be caveats, compound decisions and
“what if?” statements abounding.

Test techniques come in many shapes and sizes, some formal some not, some dynamic and some
static. It is not the intention of this e-book to explain in every detail the functions, coverage or
methods of all of these techniques. The overall objective is to discuss the issues surrounding the
use, selection, advantages and disadvantages of the various test techniques as a set of tools to
support test analysis and design and defect finding.

The test techniques being most relevant to the test analyst and considered in this e-book are
divided into the two following categories:

- Specification-based (or black box) test techniques
- Experience-based test techniques.

These categories techniques are complementary and may be used as appropriate for any given
test activity, e.g., specification-based techniques may be combined with experience-based
techniques to leverage the experience of developers, testers and users to determine what should
be tested. Note that both categories of techniques can be used to test both functional or non-
functional quality characteristics.

Test Techniques for the Test Analyst Page 5

Other categories of test techniques, not considered in this e-book, but that need to be at least
briefly mentioned are:

- Static techniques, e.g., reviews, static code analysis
- Structure-based (or white-box) test techniques, e.g., statement and decision testing
- Defect-based techniques, e.g., software attacks, defect taxonomies

As stated before, in this e-book “Test Techniques for the Test Analyst” we will limit ourselves to
discussing specification-based test techniques and experience-based test techniques. This is
because these are these ones most commonly used by the test analyst (see figure 1), which is
one of the clear conclusion from the Software Testing Practices Report [ISTQB]. Within both
categories we will be focusing on those techniques that are most popular. This again being based
on the result from the Software Testing Practices Report.

Figure 1: Most adopted test techniques

From the list above of most adopted test techniques, Use Case Testing, Boundary Value Analysis,
Equivalence Partitioning, Decision Tables, State Transition, Pairwise testing and Classification
Trees, all being specification-based techniques, are discussed in the e-book. Exploratory Testing,
Checklist based and Error Guessing, all being experience-based techniques, are also discussed.
The structure-based techniques Decision Coverage and Statement Coverage (number 8 and
number 10 on the list, and both probably mostly used by technical testers at component testing)
and the defect-based technique Attacks (number 12 on the list with a mere 10,4% uptake) are
“unfortunately” not discussed.

Specifically for the tester who loves coverage measures, 77% of the most adopted test techniques
are covered in this e-book, and if we take into account the uptake percentages, no less than 88%
of the situations where test techniques are being applied are covered.

Test Techniques for the Test Analyst Page 6

1.2 Agile

In Agile testing, many tests are created by testers concurrently with the developers’
programming activities. Just as the developers are programming based on the user stories and
acceptance criteria, so are the testers creating tests based on user stories and their acceptance
criteria. Some tests, such as exploratory tests and some other experience-based tests, are
created later, during test execution, as explained in section 3. Testers can apply “traditional”
specification-based techniques such as equivalence partitioning, boundary value analysis,
decision tables, and state transition testing to create these tests. For example, boundary value
analysis could be used to select test values when a customer is limited in the number of items
they may select for purchase. It is important for the test analyst to perform both testing of the
individual user story functionality supplied as well as integration of the user story in the overall
system. Also non-functional requirements can be documented in the user story format.
Specification-based test techniques can also be used to create tests for non-functional quality
characteristics. A user story can for example contain performance or reliability requirements. It
is important for the test analyst to perform both testing of individual user story fun

User stories
In most Agile projects, requirements come in a user story format. This doesn’t change the nature
of the testing task. It just means that the test basis is delivered in a different format.

User story: A high-level user or business requirement commonly used in agile software
development, typically consisting of one or more sentences in the everyday or business language
capturing what functionality a user needs, any non-functional criteria, and also includes
acceptance criteria.

User story is one of the primary development artifact for agile project teams. In agile
methodologies requirements are prepared in the form of user stories which describe small
functional units that can be designed, developed, tested and demonstrated in a single iteration
[Cohn]. These user stories include a description of the functionality to be implemented, any non-
functional criteria, and also include acceptance criteria that must be met for the user story to be
considered complete. A user story contains just enough information so that development team
can reasonably give estimate about completing, tester can discuss how it will validated and
customer can see its value. One of the common question that, how user stories are different from
use cases. User stories are much simpler than use cases. User stories are very easy to create,
discuss and develop. They also do not contain any technical details.

Typically good user stories are defined in the following format:
“As a <role>, I want <goal/desire> so that <benefit>”.
An user story example: “As a student, I want to be able to buy a parking pass so I can get to school
quickly”.

Test Techniques for the Test Analyst Page 7

It is also common to identify the acceptance criteria, which the stakeholders will use to validate
that the user story has been implemented correctly. Some examples of possible acceptance
criteria based on the user story example earlier in this section:
“As a student, I want to be able to buy a parking pass so I can get to school quickly”.

- A pass should be issued per month
- The student will not receive the parking pass if the payment is insufficient
- One can only buy a parking pass to the school parking lot if the person is a registered

student
- The student can only but one parking pass per month.

Test techniques
Experience-based techniques, e.g., exploratory testing, fit almost perfectly with Agile for many
reasons. Typically in Agile there is limited time available for test design, the level of detail of the
test basis may make it more difficult to apply specification-based techniques, experience-based
techniques are low on documentation, center around the experience of testers, etc. When
moving to Agile, some testers even stop applying specification-based techniques.

However, in many cases there is still a need for and value to also using specification-based
techniques. The application may have a part where the processing depends on a number of
combined input parameters and to test this thoroughly a decision table is needed, or a part where
boundary values are used, is critical to the functionality. In such cases, and many others, applying
the principles of a specification-based techniques will have added value. In Agile context this is
sometimes done explicitly, but more often implicitly. We should of course only do things that
have added value. The objective should never be to apply a test design techniques, follow a
procedure, or to design test cases. The objective is to find defects. Test techniques as such, are a
means to achieve an objective. In summary, in order to achieve the best results, experience-
based techniques should most often be blended with other categories of techniques, e.g.,
specification-based techniques.

Some “guidelines” and things to remember for applying specification-based techniques in an
Agile context:

- Use them in a pragmatic way, use them as required by the situation or context.
- The objective of the technique, e.g., the specific defects being targeted, are are much

important that the method and procedure being used.
- Often a test technique can be applied in different ways and has different levels of

thoroughness (see sections hereafter) and thus provides flexibility. These variations must
be understood and the derived flexibility should be used as such.

- Tests are much more important than detailed test specifications, test procedures and/or
other documentation.

- Different techniques can complement each other; try to combine the principles of
different techniques.

- Using techniques implicitly sounds easy, but is often in practice much more difficult than
using them explicitly. Get training and study the various test techniques, become a master
at using them.

Test Techniques for the Test Analyst Page 8

An example of how a specification-based technique can be applied with a set of user stories is
provided in section 2.6 “State Transition Testing”.

2. Specification-Based Techniques

2.1 Introduction

The first category of test techniques to be presented are the specification-based test techniques.
Specification-based test techniques are also known as “black-box” test techniques because they
view the test object as a black-box with inputs and outputs, without having knowledge on how
the system or component is structured inside the box. In essence, the tester is concentrating on
what the software or system does, not how it does it. All specification-based techniques have the
common characteristic that they are based on a model (formal or informal) of some aspect of the
specification, which enables test cases to be derived in a systematic way. With specification-
based test techniques the test conditions and test cases are derived systematically from these
models (the test basis).

Specification-based technique: Procedure to derive and/or select test cases based on an analysis
of the specification, either functional or non-functional, of a component or system without
reference to its internal structure.

Note that the specification-based test design techniques discussed in the following sections focus
primarily either on determining an optimal number of test cases (e.g., equivalence partitions) or
deriving test sequences (e.g., state transition testing). In practice, it is common to combine
techniques to create even more “complete” test cases.

The decision to use or not to use specification-based techniques is based on many factors
including risk, customer/contractual requirements, type of system, regulatory requirements and
time and budget [Foundations]. Initially a basic view of both the advantages and disadvantages
of specification-based techniques must be taken.

Advantages Disadvantages
Higher level of objectivity Requires training (at least to some

degree)
Formal coverage measures possible Time to implement – it’s usually a culture

change
Early defect finding when doing test
design

Everyone must be ‘bought in’

Traceability from requirements to test
cases (audit trails possible)

Not seen as useful for all applications
and all lifecycle models

Coverage less dependent of the tester Takes more time than informal test
design

Test Techniques for the Test Analyst Page 9

Advantages Disadvantages
Way to differentiate test depth based on
risks using different techniques

Do not cover all situations (experience-
based testing still useful)

High level of re-use (re-usable testware) Little use of domain and product
knowledge of tester

Repeatability of tests and reproducibility
of defects

Documentation intense

Good defect finding capability Difficult to respond to last minute
changes – less flexible

Table 1: Advantages / disadvantages specification-based techniques

There are a number of specification-based testing techniques. These techniques target different
types of software, systems and scenarios. For each technique a short description is provided in
the following sections, describing amongst others how to apply the technique. To make the
understanding and selection of the specification-based test techniques easier, and to be able to
compare the techniques, a number of characteristics is provided for each technique:
- Test level
- Test basis
- Coverage
- Application area
- Type of defects that are targeted
- Quality characteristics
- Limitations and difficulties that the test analyst may experience.

Test level
Some techniques are more usable at integration level, while others are more suitable for testing
at system or acceptance level. An indication is provided regarding at what level the techniques
are most appropriate and most often used. A distinction is made in component, integration,
system and acceptance test level.

Test basis
Specification-based test techniques are based on a specification. Whether or not a technique can
be applied is amongst others determined by the available documentation. Some techniques only
need high level documentation to be applicable, where others need very specific information. In
some cases there may even be no documented requirements, but only implied requirements
such as replacing the functionality of a legacy system.

Coverage
Most specification-based techniques also provide coverage criteria, which can be used for
measuring coverage during test design and/or test execution activities. For specification-based
test techniques coverage criteria do not relate to the software code, but to the level of
thoroughness with which the requirements are tested. Completely fulfilling the coverage criteria

Test Techniques for the Test Analyst Page 10

does not mean that the set of test is complete, but rather that the model no longer suggests any
additional tests to increase coverage based on that technique.

Application area
Some specification-based techniques are particularly suited to test the interaction between a
system and its users (user interfaces, reports), while others are more suited to test the
relationship between a business processes and a system or to test batch processing. Yet another
group is used to test the integration between components. The applicability of the various
techniques is also related to the type of defects that can be found using them, such as incorrect
input validation, incorrect processing or integration defects.

Quality characteristics
For each technique a reference is provided to the ISO 25010 quality characteristics answering the
question “What quality characteristics can be tested with this specific technique?” Some
techniques are for example more suitable for testing usability; others are more suitable for
functionality, interoperability or security.

2.2 Equivalence Partitioning

Equivalence partitioning: A black box test design technique in which test cases are designed to
execute representatives from equivalence partitions. In principle test cases are designed to cover
each partition at least once.

Equivalence Partitioning (EP) is most used specification-based technique and is applicable at all
levels of testing. The basic idea is to divide the input domain into equivalence classes (EC’s) or
partitions which, according to the specification, have the same behavior. The basis of the
technique is that any value chosen from an equivalence partition is as valid as any other, since it
is expected to be processed in the same way. By selecting one representative value from a
partition, coverage for all the items in the same partition is assumed. The technique aims at
reducing the number of test cases that is required to test the handling of inputs, outputs, internal
values and time-related values to a manageable size, resulting in a small but highly effective test
set. An huge advantage of EP is that with a limited set of test cases a good level of coverage can
be achieved. The set of test cases that results from applying EP can also be used as a basis for a
regression test set. EP can easily be extended to or combined with Boundary Value Analysis (see
section 2.3).

Characteristics

Test levels All test levels, but especially recommend for integration
testing and system testing.

Test basis Requirements and design documents

Test Techniques for the Test Analyst Page 11

Coverage Coverage items are the partitions described by the test basis.
Coverage is calculated as follows:
Equivalence partition coverage =
(Number of covered partitions/Total number of partitions)
* 100%
Note that using multiple tests for a single partition does not
increase the coverage percentage.

Application area All types of systems
Type of defects Functional defects in the handling of various data values.
Quality characteristics Functionality, Interoperability

Table 2: Characteristics Equivalence Partitioning

Applicability
This technique is appropriate when all members of a set of values to be tested are expected to
be processed in the same way and where the various sets of values used by the application do
not (largely) interact. Selecting test values is applicable to both valid and invalid partitions (i.e.,
partitions containing values are considered invalid for the test object being tested). This
technique is strongest when used in combination with boundary value analysis, which will expand
the test values to also include those on the edges of the partitions.

Limitations/Difficulties
If the assumption is incorrect and the values within a partition are not handled in exactly the
same way, this technique may miss defects. It is also important to select the partitions carefully.
For example, an input field that accepts both positive and negative numbers should be tested as
two partitions, one for the positive numbers and one for the negative numbers, because of the
likelihood that they are processed differently. If zero is allowed, this may become another
partition as well. It is important for the test analyst to have a basic understand the underlying
processing in order to determine the best way to partition the values.

Design Procedure
When applying EP four distinct steps have to be taken. The first step is to identify relevant input
attributes. The second step is to identify the accompanying equivalence classes. Then, as a third
step, the test cases are identified and described. The last step is to also partition the output
values.

Identify relevant input attributes
EP starts by studying the requirements specification for input attributes that influence the
processing of the test object. This can be straightforward, e.g., the fields on a screen or the
parameters of an interface. However, one can also think of attributes such as system parameters,
hardware platforms, operating systems etc. Since the number of input attributes that can be
managed in one test specification is limited, this step sometimes also involves splitting up the
test object in a number of test units that will be tested separately. If for instance a test object has

Test Techniques for the Test Analyst Page 12

50 or more input attributes, one may split up the test specification into two test specifications,
that partly overlap, to handle the complexity (each with approximately 25 to 30 input
parameters).

Consider the following specification:

Benefit
Every person receives a benefit of 350. In addition it is determined whether a person has
worked and that his/her age is higher than 40. In this case the benefit is raised by 100.
Alternatively (else) for persons that are not working and have exactly 4 children the benefit
is raised by 50.

For this specification, the following three input attributes can be distinguished:

- Working history
- Age
- Number of Children.

Note that the input attributes are listed atomically (non-compound), e.g., ‘A’ can be an input
attribute, ‘B’ can be an input attribute, but ‘C AND D’ has to be split up into two separate input
attributes.

Identify equivalence classes
For each attribute that has been identified at step one, the accompanying equivalence classes
need to be identified. Each equivalence class (EC) is a representative of (or covers) a large set of
possible values. During this step the equivalence classes are identified using the following rules
[Kit]:

- For a boundary value, 1 valid EC (within the boundary) and 1 invalid EC (outside the
boundary)

- For a boolean, 1 valid EC (true) and 1 invalid EC (untrue)
- For a range, 1 valid EC (within the range) and two invalid EC’s (one outside each end of the

range)
- If the input is a number (N), 1 valid EC (the exact number) and two invalid EC's (smaller

than N and more than N)
- If the input is a set of valid values, 1 valid EC (from within the set) and 1 invalid EC (outside

the set)
- If there is reason to believe that elements in a EC are not handled in an identical manner

by the program, subdivide the EC into smaller EC’s
- For compulsory input also test with an empty input.

Test Techniques for the Test Analyst Page 13

For the specification example “benefit” applying these rules would result in the following
equivalence classes:

Attribute Rule Valid EC’s Invalid EC’s
Working history Boolean Yes No
Age Boundary Value >40 ≤ 40
Number of Children Number 4 <4, >4

Note that invalid doesn’t necessarily mean that the values are not accepted by the system. It can
also mean that the inverse of a stated requirement is tested, as is the case in this example.

Identify test cases
The next step is to combine the various EC’s to define the content of the test cases. Start by
making completely valid test cases until all valid EC’s have been covered by test cases. Test cases
are written that cover as many of the uncovered EC’s as possible. For the “benefit” example only
one test case is needed to cover all three valid EC’s. Subsequently test cases are designed for the
invalid EC’s. This is done until all invalid EC's have been covered by the test cases. It’s important
to note that a test case will cover one, and only one, invalid EC. If multiple invalid EC’s are tested
in the same test case, some of those tests may never be executed because the first test may mask
other tests or even terminate the execution of the test case. At the end it is often interesting to
add one test case consisting of only invalid EC’s. Of course a necessary part of any test case is a
description of the expected result.

For the specification example “benefit” this will result in the following test cases:

Test case 01 02 03 04 05 06
Working history Yes No Yes Yes Yes No
Age >40 >40 ≤40 >40 >40 ≤40
Number of Children 4 4 4 <4 >4 <4
Expected result 450 400 400 450 450 350

For better understanding of the example, the invalid EC’s are indicated in yellow.

Output partitioning
Sometimes it is possible to not only apply input partitioning, but to also apply output partitioning.
This is often perceived as a verification of the first three steps of the EP technique. During output
partitioning “all” possible outputs are listed based on the specification, e.g., the error messages,
and a check is carried out to see whether the expected results of the test cases already identified
cover all possible outputs. If not, additional test cases are designed to cover these outputs. Test
cases may also be designed to test that invalid output values cannot be induced.

Test Techniques for the Test Analyst Page 14

For the specification example “benefit” the possible results for benefit received are 350, 400 and
450. All of these are already covered in the existing set of test cases, thus no additional test cases
are needed based on the output partitioning step.

2.3 Boundary Value Analysis

Boundary value analysis: A black box test design technique in which test cases are designed
based on boundary values.

Boundary Value Analysis uses a model of the component and partitions the input and output of
that component, e.g., a test item (function, feature) with numeric inputs that can be divided in
equivalence classes. The values at and around the boundaries of an equivalence class are referred
to as boundary values. These are values at which often defects can be found. When determining
the test cases, values close to these boundaries are chosen so that each boundary is tested with
a minimum of two test cases, or three for full boundary value coverage (see design procedure
hereafter for details). Applying boundary value analysis increases the chances of finding defects
compared to a random selection from within a equivalence class.

Boundary value analysis can be applied at all test levels, but is especially recommended for
component testing. One does not need a fully integrated system to test boundary values, and as
always the earlier the defect is found the better. Boundary value analysis is relatively easy to apply
and its defect finding capability is relatively high, but more detailed specifications are needed.
When applying boundary value analysis more test cases will be created and therefore more effort,
also during test execution, is needed compared to equivalence partitioning. Boundary value
analysis is often considered an extension of equivalence partitioning.

Characteristics

Test levels All, but especially recommended for component testing
Test basis Requirements and design documents
Coverage The coverage items are the boundaries of partitions described

by the test basis. Some partitions may not have an identified
boundary, for example, if a numerical partition has a lower but
not an upper bound. Coverage is calculated as follows:
Boundary value coverage =
(number of distinct boundary values executed / total number
of boundary values) * 100%

Application area All types of software systems, especially usable for testing
components (functions) with numeric equivalence classes.

Type of defects Defects regarding the processing of the boundary values,
particularly defects with “less-than” or “greater-than” logic.

Quality characteristics Functionality, Correctness

Table 3: Characteristics Boundary Value Analysis

Test Techniques for the Test Analyst Page 15

Applicability
This technique is applicable at any level of testing and appropriate when numeric equivalence
partitions exist. Numeric is required because of the concept of being on and over a boundary. For
example, a range of valid numbers is an numeric partition. A partition that consists of all
rectangular objects is not an numeric partition and does not have boundary values. In addition
to ranges with numbers, boundary value analysis can also be applied to numeric attributes of
non-numeric variables (e.g., length), loops (including those in use cases), stored data structures,
physical objects (including memory) and time-determined activities. Note that it is also possible
to test for extreme boundaries (the minimum and maximum value permitted).

Limitations/Difficulties
The successfull application of this technique depends on the accurate identification of the
boundaries of the equivalence partitions. The test analyst should also be aware of increments in
the various valid and invalid partitions, to be able to accurately determine the values to be tested.
Only numeric partitions can be used for boundary value analysis but this is not limited to a range
of valid inputs (see above).

Design Procedure
When applying boundary value analysis, the equivalence classes have to be defined first (see
section 2.2). When this activity is completed, the following additional rules have to be taken into
account to derive boundary value analysis test cases:
- For each input that concerns a range, test cases for the end of the range and invalid input test

cases for conditions just beyond the ends
- If the input is a number of valid values, test cases for the minimum and maximum number of

values and one beneath and beyond these values.

As stated when applying boundary value analysis, one has to define the equivalence classes first.
When a requirement specifies for example the following condition:

IF 23 ≤ age < 44 THEN

The following three distinct equivalence classes for age can be found:
- Age less than 23
- Age has a value in the range 23-43 (boundaries included)
- Age is greater or equal than 44.

Two or three values?
There are two ways to approach boundary value analysis: two value or three value testing. With
two value testing, the boundary value (on the boundary) and the value that is just over the
boundary (by the smallest possible increment) are used. The boundaries are defined by the
maximum and minimum values in the defined equivalence partition. For three value boundary
testing, the values before, on and over the boundary are used. The decision regarding whether

Test Techniques for the Test Analyst Page 16

to use two or three boundary values should be based on the risk associated with the item being
tested, with the three boundary values approach being used for the higher risk items.

Following the “age” example the boundary values to be selected, when taken the minimum of
only two boundary test cases, for age are: 22 (invalid), 23 (valid), 43 (valid) and 44 (invalid). In
this case the minimum and maximum value of each partition is tested.

For full boundary value analysis three values per boundary are selected. Thus for each identified
boundary three test cases shall be identified covering the values on the boundary and an
incremental distance on either side of it. This incremental distance is defined as the smallest
significant value for the data type under consideration. The additional test value is then chosen
just within or just without the equivalence class defined by the boundary value.

Taking the previous “age” example once again. For the lower boundary the boundary test cases
will now be 22 (invalid), 23 (valid) and 24 (valid). The added boundary value test case will find an
additional defect when for example ”age=23” has been implemented. This defect would not have
been found when testing with only two boundary value analysis test cases. For the upper
boundary the boundary values test cases are 43 (valid), 44 (invalid) and 45 (invalid). In the figure
below the boundary values are shown that are to be tested for full boundary value analysis.

2.4 Decision Table Testing

Decision table testing: A black box test design technique in which test cases are designed to
execute the combinations of inputs and/or stimuli (causes) shown in a decision table.

Decision table testing is a technique which aims to create test cases for “interesting” combinations
of inputs. The specification is analyzed, and conditions (inputs) and results (intermediate results,
messages, outputs) are identified. The conditions and results have to be stated in such a way that

23 44

22
23

43
44

23 44

22
23

43
44

24 45

Test Techniques for the Test Analyst Page 17

they can either be true or false (boolean). Decision tables are used to test the interaction between
multiple conditions. They provide a way to test all combinations of conditions and to verify that
all possible combinations are processed correctly by the software under test. The objective of
decision table testing is to test every, or at least every interesting, combination of conditions,
relationships and constraints.

The strength of decision table testing is that it creates combinations of inputs that might not
otherwise have been exercised during testing. Some research even suggests a 90% defect
detection rate can be achieved with decision table testing. A disadvantage is that when there is
a large number of inputs (conditions), the technique can become very complex, expensive and
even unfeasible. Therefore decision table testing should only be applied on selected parts of the
functionality to reduce the complexity and especially on high-risk items. Since decision table
testing is a thorough technique that will test the test object in great detail, it also requires
detailed specifications of good quality in order to be applicable.

Characteristics

Test levels Component testing (when a component has decision logic),
integration testing, system testing

Test basis Requirements and design documents
Coverage Coverage items are rules, where each rule represents a

unique possible combination of inputs to the component that
have been expressed as booleans. Coverage is calculated as
follows:
Decision table coverage =
(Number of rules exercised/Total number of rules) * 100%

Application area Test items with boolean conditions (or that can be expressed
as booleans). To be used for business rules, critical
components (functions), state machines and complex
processing.

Typical defects Incorrect processing based on particular combinations of
conditions resulting in unexpected results. During the creation
of the decision tables, defects could already be found in the
specification document because of the detailed test analysis
that is performed. The most common types of specification
defects are omissions (there is no information regarding what
should happen in a certain situation) and contradictions.

Quality characteristics Functionality, Correctness, Interoperability

Table 4: Characteristics Decision Table Testing

Applicability
This technique is particularly applicable when the requirements are presented in the format of
flow charts, tables of business rules. Decision tables are also a requirements specification

Test Techniques for the Test Analyst Page 18

technique and some requirements may even arrive exist in a decision table format. Even when
the requirements are not presented in a tabular or flow-charted format, conditions are usually
found in the narrative. When designing decision tables, it is important to consider the defined
conditions and their combinations, as well as those that are not explicitly defined but do exist.
Only when all interacting conditions are considered a decision table is an effective tool for testing.
Note that some easy to use supporting tools are available for decision table testing, making it, in
many organizations, a very popular test technique.

Limitations/Difficulties
Finding all the interacting conditions can be challenging, particularly when requirements are not
well-defined or do even not exist. It is not unusual while identifying conditions to discover that
expected results are unknown and thus to find defects at an early stage. The technique rapidly
becomes infeasible when the number of input conditions is too large. Collapsed decision tables
(see hereafter) is unfortunately only part of the answer. In general when the number of input
conditions is too large one needs to partition the test item, and subsequently design separate
decision tables of manageable size.

Design Procedure
When using decision table testing the specifications have to be studied in detail to derive
conditions and expected results. For further explanation the “benefit” specification example will
again be used:

Every person receives a benefit of 350. In addition it is determined whether a person has
worked and that his/her age is higher than 40. In this case the benefit is raised by 100.
Alternatively (else) for persons that are not working and have exactly 4 children the benefit
is raised by 50.

Analyzing the specification above, the following conditions (inputs) are found:

- Person has worked
- Age of person is higher than 40
- Person has exactly 4 children

The following expected intermediate results (outputs) can be found:

- Benefit received of 350
- Benefit raise of 100
- Benefit raise of 50

All this information will be placed in a so-called decision table. Since decision table testing uses
100% multiple condition coverage as its main principle, all possible combinations of inputs are
tested.

Test Techniques for the Test Analyst Page 19

Multiple condition coverage: The percentage of combinations of all single condition outcomes
within one statement that have been exercised by a test suite.
Multiple condition testing: A white-box test design technique in which test cases are designed
to execute combinations of single condition outcomes (within one statement).

Therefore the number of test cases for decision table testing is 2 to the power of N, where N is
the number of conditions (inputs). With 3 conditions as in the example, the number of test cases
will 23 thus 8 test cases.

General rules when identifying the conditions for a decision table are:
- In principle only single conditions, compound conditions are split up
- Formulate the condition in a positive way (don’t use NOT), making the decision table much

easier to understand
- Rank the conditions by priority, first the condition that has the most impact on the results,

etc. (especially important for collapsed tables – to be discussed hereafter).

The decision table based on the “benefit” example is as follows:

 Test cases
Conditions/Results

1 2 3 4 5 6 7 8

Person has worked 1 1 1 1 0 0 0 0
Age of person is higher than 40 1 1 0 0 1 1 0 0
Person has exactly 4 children 1 0 1 0 1 0 1 0

Benefit received of 350 X X X X X X X X
Benefit raise of 100 X X
Benefit raise of 50 X X
Expected end result 450 450 350 350 400 350 400 350

Note that sometimes combinations of conditions are infeasible, making the test case itself
impossible e.g., when conditions are mutual exclusive.

Collapsed tables
Since the number of test cases grows exponentially with a larger number of inputs the decision
table testing technique rapidly becomes infeasible to use. A number of authors have developed
ways to bring the maximum number of test cases down to a reasonable number. The most
commonly used rule for reduction of the number of test cases is the one of collapsed tables
[Mors]. When all test cases are studied closely, one usually observes that there is a number of
closely related test cases. Mors has developed a strategy for identifying likely ‘non-relevant’ test
cases, which can subsequently be removed. Be aware that applying collapsed decision tables or
not, should always be a risk management decision [Copeland].

The standard rule for reducing the number of test cases is that, if for two test cases only one
condition (input) differs and the resulting effects (actions) are the same these test cases (columns)

Test Techniques for the Test Analyst Page 20

can be joined. Two columns are compared that only differ one place in the table (the last condition
pairs with his neighbour). It typically helps to look at the change of the Yes / No (or 1 / 0) value for
a condition.

If this rule would be applied to the benefit specification example and resulting decision table,
amongst others test cases, test case 1 and 2 can be joined (see decision table below). For test case
1 and 2 only one condition is different, and the result is the same. One of these two test cases can
now be removed, since the chance of finding different defects with these two test cases is
considered low. Following this rule also test cases 3 & 4, 5 & 7, and 6 & 8 can be combined resulting
in the following collapsed decision table:

 Test cases
Conditions/Results

1 2 3 4

Person has worked 1 1 0 0
Age of person is higher than 40 1 0 - -
Person has exactly 4 children - - 1 0

Benefit received of 350 X X X X
Benefit raise of 100 X
Benefit raise of 50 X
Expected result 450 350 400 350

Things to remember with collapsed tables:
- always delete the column on the right
- an ‘-’ is not the same as a ‘Y’ or ‘N’
- a column is only involved in the comparing process once (e.g., 1-2, 3-4, not 1-2, 2-3, 3-4)
- for infeasible combinations: if for two test columns only one condition differs and one test

column is an infeasible combination they may be joined; the feasible column “survives”.

Finally, and of course most important, it should be a risk management decision! To understand
this last statement even better, let’s define a decision table for the requirement: “A phone
company will only accept customers that have a valid address and are older than 18 years”.

The full decision table will look like this: The collapsed decision will look like this: (check!)

Test
Case

1 2 3 4 Test
Case

1 2 3 4

Valid
Address

Y Y N N Valid
Address

Y Y N N

Older
Than 18

Y N Y N Older
Than 18

Y N - N

Accept X Accept X
Not
accept

 X X X Not
accept

 X X X

Test Techniques for the Test Analyst Page 21

What happens if you have decided for the 3rd test case of the collapsed table to use 17 as your
age value (as you are free to choose any value), and the developer in his program only checks for
age “older than 18” to accept and has forgotten to check also on the valid address?

2.5 Cause-Effect Graphing

Cause-effect graphing: A black box test design technique in which test cases are designed from
cause-effect graphs.
Cause-effect graph: A graphical representation of inputs and/or stimuli (causes) with their
associated outputs (effects), which can be used to design test cases.

This specification-based test technique is based upon an analysis of the specification of the
component to model its behavior by means of causes and effects. Cause-effect graphs may be
generated from any source which describes the functional logic (i.e., the “rules”) of a program,
such as user stories or flow charts. They can be useful to gain a graphical overview of a
program's logical structure and are typically used as the basis for creating decision tables.
Capturing decisions as cause-effect graphs and/or decision tables enables systematic test
coverage of the program's logic to be achieved. Cause-effect graphing strongly resembles
decision table testing as discussed in the previous section. Mainly the way the test design is
documented differs: a cause-effect graph vs. a decision table.

Characteristics

Test levels Component testing (when a component has decision logic),
integration testing, system testing

Test basis Requirements and design documents
Coverage Each possible cause to effect line must be tested, including

the combination conditions, to achieve minimum coverage.
Coverage items are rules, where each rule represents a
unique possible combination of inputs to the component that
have been expressed as Booleans. Coverage is calculated as
follows:
Cause-effect coverage =
(Number of rules exercised/Total number of rules) * 100%

Application area Test items with boolean conditions (or that can be expressed
as booleans). To be used for business rules, critical
components (functions), state machines and complex
processing.

Test Techniques for the Test Analyst Page 22

Typical defects Cause-effect graphing typically find the same types of
combinatorial defects as can be found with decision tables. In
addition, the creation of the graphs can help to define the
required level of detail in the test basis, and thus helps to
improve the level of detail and quality of the test basis. As a
result it supports identifying missing and ambiguous
requirements.

Quality characteristics Functionality, Correctness, Interoperability

Table 5: Characteristics Cause-Effect Graphing

Applicability
Cause-effect graphing applies in the same situations as decision table testing and also apply to
the same test levels. In particular, a cause-effect graph shows condition combinations that cause
results (causality), condition combinations that exclude results (not), multiple conditions that
must be true to cause a result (and) and alternative conditions that can be true to cause a
particular result (or). These relationships can be easier to observe in a cause-effect graph than in
a narrative description.

Limitations/Difficulties
Cause-effect graphing requires additional time and effort to learn compared to some other test
design techniques. It also requires tool support for creating cause-effect graphs. Cause-effect
graphs have a particular notation that must be understood by the creator and reader of the
graph. As a result of these limitations the uptake of cause-effect graphing is limited and many
testers choose decision table testing instead.

Design Procedure
As with decision table testing, also with cause-effect graphing the specifications have to be
studied in detail to derive conditions and results. For further explanation the following
specification example will be used:

Car Insurance
If the car is small (less than 1.4l) or the owner lives in Bonaire, offer Cheap insurance. If the
car is large (more than 2.0l) offer the Executive Options package.

Analyzing the specification above, the following causes (conditions) are found:

- C1: Small car (less than 1.4l)
- C2: Large car (more than 2.0l)
- C3: Owner live in Bonaire

The following effects (actions) can be found:

- A1: Offer cheap car insurance
- A2: Offer executive options

Test Techniques for the Test Analyst Page 23

All this information will be used in constructing the so-called cause-effect graph. A cause-effect
graph shows the relationship between the conditions and actions in a notation similar to that
used by designers of hardware logic circuits. The specification “Car Insurance” is now modeled
by the cause-effect graph as shown in figure 2.

Figure 2: Cause-effect graph “Car Insurance”

Note that cause-effect graphs use standard logical symbols for AND and OR (one can observe the
V symbol in the graph above to represent an AND) and a wavy line indicating NOT. The arc groups
those inputs affected by a logic symbol, where there are more than two inputs involved.

The code graph is subsequently recast in the format of a decision table (see previous section).
Each column of the decision table is a test case. In both cause-effect graphing and decision table
testing one attempts to test all possible combinations, however sometimes a combination of
conditions is infeasible. An asterisk (*) in a decision table indicates that the combination of
conditions is infeasible and so no further actions are required for this test case.

The “Car Insurance” example has the following decision table:

C1

C2

C3

A1

A2

V

Test Techniques for the Test Analyst Page 24

 Test cases
Causes/Effects

1 2 3 4 5 6 7 8

C1: Small car (less than 1.4l) 1 1 1 1 0 0 0 0
C2: Large car (more than 2.0l) 1 1 0 0 1 1 0 0
C3: Owner lives in Bonaire 1 0 1 0 1 0 1 0

A1: Offer cheap car insurance * * X X X X
A2: Offer executive options * * X X

Thus six test cases would be required to provide 100% cause-effect coverage, and need to be
created in line with the columns in the decision table above. Of course no test cases are created
for columns 1 and 2 as they are infeasible.

2.6 State Transition Testing

State transition testing: A black box test design technique in which test cases are designed to
execute valid and invalid state transitions.

State transition: A transition between two states of a component or system.

State transition testing is based on the concepts of states and finite-state machines, and allows
the tester to view the developing software in terms of its states, transitions between states, and
the inputs and events that trigger state changes. State transition testing uses a model of the
states the component may occupy, the transitions between those states, the events which cause
those transitions, and the actions which may result from those transitions. Events cause the
software to transition from state to state and to perform actions. Events may be qualified by
conditions (sometimes called guard conditions or transition guards) which influence the
transition path to be taken. The states of the model are separated, identifiable and finite in
number. State transitions are tracked in either a state transition diagram that shows all the valid
transitions between states in a graphical format or a state table which shows all potential
transitions, both valid and invalid. A state model is typically produced for the component to
identify its states, transitions, and their events and actions.

State Transition Diagrams (STD) are commonly used as state models and their notation is briefly
illustrated in figure 3. Events are always caused by input. Similarly, actions are likely to cause
output. The output from an action may be essential in order to identify the current state of the
component. A transition is determined by the current state and an event, and is normally labeled
simply with the event and action.

Test Techniques for the Test Analyst Page 25

Figure 3: State Transition Diagram notation

State testing is much used within the embedded software industry and technical automation in
general. However, the technique is also suitable for testing screen-dialogue flows, e.g., with
websites or mobile applications.

Characteristics

Test levels Component Testing, Integration Testing, System Testing
Test basis State Transition Diagrams
Coverage Coverage items are sequences of one or more transitions

between states on the model. For single transitions, the coverage
metric is the percentage of all valid transitions exercised during
test. This is known as 0-switch coverage.
For n transitions, the coverage measure is the percentage of all
valid sequences of n transitions exercised during test. This is
known as (N - 1) switch coverage.

Application area State based systems, e.g., control systems, technical automation,
embedded software, mobile applications and websites

Typical defects Incorrect processing in the current state as a result of the
processing that occurred in a previous state, incorrect or
unsupported transitions, states with no exits and the need for
states or transitions that are not specified and do not exist. Also
memory issues can be found with this technique.
During the creation of the state diagram, defects may be found in
the specification document. The most common types of defects
are omissions (there is no information regarding what should
actually happen in a certain situation) and contradictions.

Quality characteristics Functionality, Interoperability, Resource-utilization (memory)

Table 6: Characteristics State Transition Testing

State 2

Event Input

Transition

State 1

Action Output

Test Techniques for the Test Analyst Page 26

Applicability
State transition testing is applicable for any software that has defined states and has events that
will cause the transitions between those states (e.g., changing screens). Some tools are available
to support state transition testing. Since this technique follows a strict procedure the possibilities
for automation of the test design step are high.

Limitations/Difficulties
Determining the states is often the most difficult part of defining the state table or diagram.
When the software has a user interface, the various screens that are displayed for the user are
often used to define the states. For embedded software, the states will be dependent upon the
states that the hardware will experience.

Design Procedure
State transition diagrams show the state, the transitions, the inputs, events, actions and outputs
in a special notation (see figure 3). Test cases derived from it, aim at exercising the various
transitions between states. A test case may exercise any number of subsequent transitions. For
each transition within a test case, the following shall be specified:

- the starting state
- the event which causes transitions to the next state
- the expected action caused from the component
- the expected next or end state.

For example, a state transition diagram (STD) with three states and 5 transitions could look like
the diagram below.

S1 S2 S3A

B

C

D

E

When applying state transition testing the level of thoroughness can be varied by using a
different level of switch coverage. Switch coverage (or N-switch) is defined by ISTQB as “the
percentage of sequences of N+1 transitions that have been exercised by a test suite”.

In practice most often a distinction is made between 0-switch coverage and 1-switch coverage.
When 0-switch coverage is applied every transition is executed once. This means that a test case
will only go from one state to another (i.e. from S1 to S2). 100% 0-switch coverage (also called
transition coverage or logical branch coverage) will therefore guarantee that every state is visited
and every transition is traversed, unless the system design or the state transition model (diagram
or table) are defective.

Test Techniques for the Test Analyst Page 27

Based on the example STD the set of test cases for 0-switch coverage would be:

Test Case 1 2 3 4 2
Start State S1 S1 S2 S2 S3
Input A E B C D
End State S2 S3 S1 S3 S2

These 5 test cases cover all possible transitions for the example STD for 0-switch coverage.

However, simply testing all transitions will find some types of state transition defects, but more
may be found by testing sequences of transactions. When 1-switch coverage is deployed a test
case contains two subsequent transitions that can be executed one after each other. A sequence
of three successive transitions is a 2-switch, and so forth. The higher levels of switch coverage
may stimulate defects that 100% 0-switch coverage would not encounter.

Using 1-switch coverage, one can extent the 0-switch tests to check for each test case what will
happen if a subsequent transition is executed. This means for each test a flow of two state
transitions is to be executed. This is especially useful for testing resource-utilization, e.g.,
memory. The test cases for 1-switch coverage would be:

Test Case 1 2 3 4 5 6 7 8
Start State S1 S1 S1 S2 S2 S2 S3 S3
Input A A E B B C D D
Next State S2 S2 S3 S1 S1 S3 S2 S2
Input B C D A E D B C
End State S1 S3 S2 S2 S3 S2 S1 S3

Note that intermediate states, and the inputs and outputs for each transition, are explicitly
defined.

For any of these approaches, an even higher degree of coverage will attempt to include all invalid
transitions. Coverage requirements for state transition testing must identify whether invalid
transitions are included. Invalid state transition test cases will be identified using a state table
(see hereafter).

A limitation of the test cases derived to achieve a level of switch coverage is that they are all
designed to exercise only the valid transitions within the component. A more thorough test of
the component will also attempt to cause invalid transitions to occur. An STD only shows the
valid transitions (all transitions not shown are considered invalid). A state model that explicitly
shows both valid and invalid transitions is the state table. Hereafter the example STD used earlier
is represented as a state table, this again shows the five valid test cases (shaded in green) but
also shows a number of invalid tests, test cases ‘where nothing should happen’ (shaded in red).
Thus the state table provides an ideal means of deriving also a set of invalid test cases.

Test Techniques for the Test Analyst Page 28

 A B C D E
S1 S2 Invalid Invalid Invalid S3
S2 Invalid S1 S3 Invalid Invalid
S3 Invalid Invalid Invalid S1 Invalid

Table 7: Example State Table

User Stories example
We will close this section with one more example for state transition testing, this time starting
with three user stories for a laptop as test basis.

US1 : As a laptop user I want to startup my laptop so I can start working with it
US2 : As a laptop user I want to shut down my laptop so I can leave and take it with me
US3 : As a laptop user I want to temporarily suspend my laptop so I can have a break

The first step to transform the narrative type of user story requirements into a STD. The resulting
STD is shown hereafter.

Figure 4: STD Laptop

Subsequently the standard test design procedure can again be followed. This will give the
following test cases for 0-switch coverage :

Test Case 1 2 3 4
Start State S0 S1 S2 S2
Input OO SB OO OO
Expected Output SU SD DF DN
End State S1 S0 S2 S1

Test Techniques for the Test Analyst Page 29

The accompanying state table, to be used for identifying the invalid test cases (shaded in red
again) will be as follows:

 OO SB
S0 S1 Invalid
S1 S0 S2
S2 S1 Invalid

2.7 Combinatorial Test Techniques

Combinatorial testing: A means to identify a suitable subset of test combinations to achieve a
predetermined level of coverage when testing an object with multiple parameters and where
those parameters themselves each have several values, which gives rise to more combinations
than are feasible to test in the time allowed.

The objective of combinatorial testing is to provide a solution to combinatorial explosion.
Combinatorial explosion occurs when a test problem can be described as a set of parameters
with a number of different values and the total number of possible combinations of parameter
values is too large to be feasibly tested. The main purpose of combinatorial testing is to identify
a manageable set of (interesting) combinations.

In this paragraph the concept of combinatorial testing is introduced, in the two subsequent
sections the two most popular combinatorial test techniques [ISTQB] are discussed: Classification
Tree Method and Pairwise Testing.

Consider testing a web based system which should run on different operation systems (windows,
Mac, Unix, Linux, Java, IOS), support different browsers (Internet Explorer, Google Chrome,
Firefox, Safari, Android, Opera) and different types of data (gif, jpg, pdf, java script file, html, png).
Testing all possible combinations would result in 6 x 6 x 6 = 216 test configurations. This would
be most often be impossible to test within constraints of resources, budget and time.

The key insight underlying combinatorial testing is to test the interaction between the different
parameters that effect the system, whereby not every possible parameter is a contributor to
every defect. Most defects are caused by interactions between a relatively small number of
parameters. The main principle behind combinatorial testing is that defects can be considered to
fall in to one of the following categories:
- Single mode: in which something works or it fails
- Dual mode: in which even though two things work by themselves, they fail when paired

(connected) together
- Multi-mode: in which three or more things in combination don’t work together.

Empirical evidence has shown that the majority of defects in systems are either single mode or
dual mode. Single modal tests are easy to scope because there will be one test for each area of
functionality. The problems occur when functionalities are combined because this can lead to
unmanageable numbers of tests being generated. So running all tests is not an option. If

Test Techniques for the Test Analyst Page 30

combinations are picked at random, it is hard to determine coverage and it is possible that
defects are being missed, so testing would be inefficient. For example, within pairwise testing
(one of the combinatorial techniques discussed hereafter) the answer is not to attempt to test
all the combinations for all values for all variables, but to test only all pairs of variables. This
significantly reduces the number of tests that must be created and run.

Characteristics

Test levels All, although mainly used during integration and system testing
Test basis Requirements and design documents
Coverage There are several levels of coverage. The lowest level of coverage

is called 1-wise or singleton coverage. It requires each value of
every parameter to be present in at least one of the chosen
combinations (test cases). The next level of coverage is called 2-
wise or pairwise coverage. It requires every pair of values of any
two parameters be included in at least one combination. This idea
can be generalized to n-wise coverage, which requires every sub-
combination of values of any set of n parameters be included in
the set of selected combinations. The higher the n, the more
combinations (test cases) needed to achieve 100% coverage.

Application area All types of systems – see hereafter in the paragraph applicability
for some examples of specific situations where combinatorial
testing is especially useful.

Typical defects Defects related to the combination of specific values of multiple
parameters.

Quality characteristics Functionality, Interoperability, Portability

Table 8: Characteristics Combinatorial Test Techniques

Applicability
Combinatorial testing is most useful when testing complex configuration scenarios and/or
situations where there are multiple input parameters with numerous variables per parameter
that are expected to have effect on a single output condition or state. The parameters must be
independent and compatible in the sense that any option for any parameter can be combined
with any option for any other parameter. For example, testing an application on multiple versions
of Windows, with different browser versions, and different protocols and connection speeds,
then combinatorial test techniques will help to define a baseline set of test environment
configurations. Another example would be testing an API that has several parameters with
multiple arguments values that can be passed to those API parameters, then combinatorial will
also help testers establish a baseline set of tests. Combinatorial testing can also be applied to
input controls on an user interface that affect a common output state or condition. In all of these
situations, combinatorial testing can be used to identify a subset of combinations, feasible in size.

Test Techniques for the Test Analyst Page 31

For parameters with a large number of values, equivalence class partitioning, or some other
selection mechanism may first be applied to each parameter individually to reduce the number
of values for each parameter, before combinatorial testing is applied to reduce the set of
resulting combinations.

Limitations/Difficulties
The major limitation with combinatorial test techniques is the assumption that the results of a
limited set of test cases is representative of all tests and that those selected tests represent
expected usage. If there is an unexpected interaction between certain variables, it may go
undetected with this type of testing if that particular combination is not tested. Another problem
is that these techniques are usually difficult to explain to a non-technical audience as they may
not understand the logical reduction process resulting in the limited test set.

Identifying the parameters and their respective values is sometimes difficult depending on the
quality of the requirements specification. Also finding the minimal set of combinations to satisfy
a certain level of coverage is often difficult to do manually. Tools are usually used to find the
minimum set of combinations. Some of these tools support the ability to force some (sub-)
combinations to be included in or excluded from the final selection of combinations. This
capability may be used by the test analyst to emphasize or de-emphasize factors based on
domain knowledge or product usage information.

Note the comments on applicability and limitations/difficulties stated in the paragraph are
generic for all combinatorial test techniques and therefore also apply to the ones explained
hereafter: Classification Tree Method and Pairwise Testing.

2.8 Classification Tree Method

Classification tree method: A black box test design technique in which test cases, described by
means of a classification tree, are designed to execute combinations of representatives of input
and/or output domains.

The Classification Tree Method (CTM) [Grochtmann] is a special approach to partition testing by
partly using and improving ideas from the equivalence partitioning technique (see section 2.2)
and applying it to the principles of combinatorial testing. By means of the CTM, the input domain
of a test object is regarded under various aspects assessed as relevant for testing. For each
aspect, disjoint and complete classifications are formed. Classes resulting from these
classifications may be further classified – even recursively. The stepwise partition of the input
domain by means of classification is represented graphically in the form of a tree. Subsequently,
test cases are formed by combining classes of different classifications. This is done by using the
tree as the head of a combination table in which the test cases are marked. Classification trees
allow for some combinations to be excluded, if certain options are incompatible. When using the
CTM, the most important source of information for the tester is the requirements specification
of the given test object. Various tools are available to support the CTM.

Test Techniques for the Test Analyst Page 32

Design Procedure

Selecting test objects
A large system cannot be tested reasonably with a single classification-tree, as such a tree would
become much too large to handle. Therefore, the functionality of the system under test has to
be divided into several separate test objects. This has to be done in such a way that each of the
resulting test objects can be tested individually and that by testing all test objects the complete
system is tested thoroughly.

Designing a classification tree
During this step, a classification tree has to be built up for each of the test objects, reflecting all
test relevant aspects. To derive test cases by CTM one first identifies the aspects of the test object
that influence the functional behavior of the component. As an example a camera is used that
should detect different kinds of objects. These objects can vary in color and shape (the two
relevant aspects in our example). The classification based on the aspect “color” leads to a partition
of the input domain into, for example, the classes red, green and blue. The shape could either be
triangle or circle. See figure below.

Classes itself can be further classified. In our example the triangle class has been split into two
new classes: the size of triangle. See figure below.

Color Shape

Red Green Blue Triangle Circle

Color Shape

Red Green Blue Triangle Circle

Size

Large

Small

Test Techniques for the Test Analyst Page 33

Combining classes to form test cases

When the classification-tree is finished, all the information needed for preparing test cases is
available. A test case is formed by:

- Selecting a class for each aspect
- Combining these classes.

During this step, test cases are to be selected and generated that cover the most important real-
life situations for each test object. Thus domain knowledge is important here. The number of test
cases in principle remain for the tester to decide. However, the classification tree also provide
clues to the number of test cases required. The minimum number of test cases is achieved when
every leaf class is covered by at least one test case (where the leaf class is defined as a class in the
classification tree not further divided into sub-classes). Since leaf classes of the same base
classification cannot be combined, the minimum criterion is the largest number of leaf classes
that belong to a base classification. This level of coverage is called 1-wise coverage. The minimal
variant of the CTM will in our example lead to three test cases.

According to the classification-tree method the three test cases would look like:

- Test case 1: Red colored large Triangle
- Test case 2: Green colored Circle
- Test case 3: Blue colored small Triangle.

When more thorough testing is necessary based on the risks identified for the test object, more
combinations of classes shall be covered by test cases. The theoretical maximal variant requires
that every possible combination of the classes of all aspects must be covered by test cases. It is

Color Shape

Red Green Blue Triangle Circle

Size

Large

Small

T

C
S

Test Techniques for the Test Analyst Page 34

basically the number of test cases that results when all permitted combinations of leaf classes
are considered. In our example, the maximum criterion amounts to 9 (i.e. 3 * 3). The supporting
tools for CTM also have the ability to define logical dependencies within the tree and
automatically generates test cases based on a set of pre-defined (coverage) rules. It allows the
test analyst to define the combinations to be tested (i.e., combinations of two values, three
values, etc.).

A reasonable number of test cased obviously lies somewhere between the minimum and
maximum criterion. As a rule of thumb, the total number of leaf classes provide an estimate for
the number of test cases required to get sufficient test coverage. In this case that would be 6 (i.e.
3+3). The objective of the Classification Tree Method is to determine a sufficient, but limited
number of test cases. So generally speaking, it is not necessary to specify a test case for each
possible combination. In fact, the Classification Tree Method should enable the tester to have a
good overview of the possibilities using the classification tree. As a result thorough choices can
made reducing the number of tests, at least partly based on domain knowledge selecting those
test cases that are most representative of real-life situations. In practical applications, this
reduction of test cases is essential, since the maximum criteria can easily run into very high
numbers.

2.9 Pairwise Testing

Pairwise testing: A black box test design technique in which test cases are designed to execute
all possible discrete combinations of each pair of input parameters.

Pairwise testing is another technique that can be used for testing combinations of values.
Pairwise testing is a technique that identifies all pairs of values from the total input domain. The
level of coverage achieved is referred to as 2-wise coverage. By using this technique, the number
of tests can be reduced while still having confidence in the coverage. Remember that the majority
of defects in systems are either single mode or dual mode.

Suppose we want to demonstrate that a new software application works correctly on PCs that
use the either Windows or Linux as an operating systems, either Intel or AMD processors, and
the IPv4 or IPv6 protocols. This is a total of 2 × 2 × 2 = 8 possibilities but, as the table below shows,
only four tests are required to test every component interacting with every other component at
least once (check!). Thus with pairwise testing, four tests cover all possible pairs of values among
these three parameters.

Test
case

Operating
System

Processor Protocol

1 Windows Intel IPv4
2 Windows AMD IPv6
3 Linux Intel IPv6
4 Linux AMD IPv4

Test Techniques for the Test Analyst Page 35

Even though pairwise testing is not exhaustive, it is useful because it can check for simple,
potentially problematic interactions with less tests. The reduction in test set size from eight to
the four shown in the example may not be that impressive, but consider a larger example: a
manufacturing automation system that has 20 controls, each with 10 possible settings providing
the tester with a total of 1020 (100,000,000,000,000,000,000) combinations, which is far more
than a tester would be able to test in a lifetime. Surprisingly, one can check all pairs of these
values with only 180 tests provided they are carefully constructed. Also for pairwise testing there
are a of tools available to support the test analyst in his task. These tools require the parameters
and their values to be listed and will show the test cases required for covering all pairs of values.

Design Procedure

Identify the variables
Referring back to the example for the web based system at the beginning of the section on
combinatorial testing, the variables are operation system, browser and type of data.

Determine the number of choices (values) for each variable
- Operating system: Windows, Mac, Unix, Linux, Java, IOS (6)
- Browser: Internet Explorer, Google Chrome, Firefox, Safari, Android, Opera (6)
- Type of data: gif, jpg, pdf, java script file, html, png (6).

Remember, multiplying 6 x 6 x 6 provides 216 combination to test. For full test coverage, each of
these combinations should be tested. For more complex systems, there would be even far greater
numbers. With pairwise testing all pairs of values are identified from the total input domain. This
will substantially reduce the number of tests while still having confidence in the coverage.

Locate an orthogonal array
A common method of deriving pairwise tests is by using orthogonal arrays. These arrays have
been used by mathematicians for centuries to solve problems. They are a set of numbers that
have the properties of including all pair combinations. Let’s look at an example.

 A B C
1 1 1 1
2 1 2 2
3 1 3 3
4 2 1 2
5 2 2 3
6 2 3 1
7 3 1 3
8 3 2 1
9 3 3 2

Test Techniques for the Test Analyst Page 36

Orthogonal areas have the property that any two columns that will contain all pairs of values. In
the example above each of the columns covers the numbers 1, 2 and 3. Looking at columns A and
C for example, we can see that this does cover all pairs: (1, 1) (1, 2) (1, 3) (2, 2) (2, 3) (2, 1) (3, 3)
(3, 1) (3, 2). The next step is to use this property to derive tests. This is done by substituting the
numbers in the array with the variables of the system we are testing.

The notation for orthogonal arrays is Lxny, where x = number of rows, y = number of columns and
n = number of choices available within the column. So the array used in the example above is the
L933

array. Arrays do not always have the same number of choices for each column. For example,
the L648243

array has two columns that contain 8 choices and 3 columns that contain 4 choices.
The array selected must be large enough to contain all choices that the requirements define. The
array can never be smaller. There are a finite number of orthogonal arrays. Therefore, the
number of attributes/choices to be tested may not match exactly with an available orthogonal
array. In these cases, the next largest array should be used and manipulated to produce the tests
required.

If the perfect size array does not exist, choose one that is slightly bigger and apply the two
following rues to deal with the “excess”. The first rule deals with extra columns. If the array
chosen has more columns than needed, simply delete them. The array will still be orthogonal.
The second rule deals with extra values for a variable. It is tempting to delete the rows that
contain these cells but don’t! The array may not be orthogonal thereafter. Each row in the array
exists to provide at least one pair combination that appears nowhere else in the array. If you
delete a row, you lose that test case. Instead of deleting them, simply convert the extra cells to
valid values.

Let’s now return to our example for the web based system. Which array is needed? First, it must
have three columns, one for each variable in this example. All three columns must support 6
different values. The perfect size orthogonal array would be 63.

Browsing through the library of possible orthogonal arrays on the internet will give L36243163 as
our most closely related array. We have now managed to lower the number of test cases from
216 to only 36 (!!), while still testing all pairs of values. Hereafter the L36243163 array is provided
in full.

1 0 0 0 0 0 1 5 5
2 0 0 0 0 1 1 1 2
3 0 0 0 0 2 0 3 1
4 0 0 0 1 0 2 4 3
5 0 0 0 1 2 3 0 2
6 0 0 0 1 2 4 2 0
7 0 0 1 1 0 4 1 4
8 0 0 1 1 1 3 3 5
9 0 0 1 1 2 5 5 3

Test Techniques for the Test Analyst Page 37

10 0 1 0 0 1 3 4 0
11 0 1 0 0 1 5 0 4
12 0 1 0 1 0 0 2 4
13 0 1 1 0 0 2 0 0
14 0 1 1 0 1 0 1 3
15 0 1 1 0 2 1 2 1
16 0 1 1 0 2 4 4 5
17 0 1 1 1 0 5 3 2
18 0 1 1 1 1 2 5 1
19 1 0 0 0 0 5 4 1
20 1 0 0 0 2 2 3 4
21 1 0 0 1 1 0 5 0
22 1 0 1 0 0 0 0 5
23 1 0 1 0 0 3 2 3
24 1 0 1 0 1 2 2 2
25 1 0 1 0 2 5 1 0
26 1 0 1 1 1 1 4 4
27 1 0 1 1 1 4 0 1
28 1 1 0 0 0 4 5 2
29 1 1 0 0 1 4 3 3
30 1 1 0 1 0 3 1 1
31 1 1 0 1 1 5 2 5
32 1 1 0 1 2 1 0 3
33 1 1 0 1 2 2 1 5
34 1 1 1 0 2 3 5 4
35 1 1 1 1 0 1 3 0
36 1 1 1 1 2 0 4 2

Since we do not need the first 5 columns, as we are only interested in the three columns with 6
values, the first five columns will just be deleted based on the rule stated earlier in this section.
Now there is a focused L3663 orthogonal array remaining that is needed to test all pairs for the
web based system.

1 1 5 5
2 1 1 2
3 0 3 1
4 2 4 3
5 3 0 2
6 4 2 0
7 4 1 4
8 3 3 5
9 5 5 3

Test Techniques for the Test Analyst Page 38

10 3 4 0
11 5 0 4
12 0 2 4
13 2 0 0
14 0 1 3
15 1 2 1
16 4 4 5
17 5 3 2
18 2 5 1
19 5 4 1
20 2 3 4
21 0 5 0
22 0 0 5
23 3 2 3
24 2 2 2
25 5 1 0
26 1 4 4
27 4 0 1
28 4 5 2
29 4 3 3
30 3 1 1
31 5 2 5
32 1 0 3
33 2 1 5
34 3 5 4
35 1 3 0
36 0 4 2

Map the test problem to the array
The necessary test configurations for the web based system will be mapped to the orthogonal
array. The choices for the operating system will be mapped onto column 1, those for the browser
onto column 2 and those for the type of data onto column 3.

The mapping for the operating system values to the array parameters (first column) is as follows:

0: Windows 1: Mac 2: Unix
3: Linux 4: Java 5: IOS

The mapping for the browser values to the array parameters (second column) is as follows:

0: Internet Explorer 1: Google Chrome 2: Firefox
3: Safari 4: Android 5: Opera

The mapping for the type of data values to the array parameters (third column) is as follows:

0: gif 1: jpg 2: pdf

Test Techniques for the Test Analyst Page 39

3: java script file 4: html 5: png

The resulting array for the 36 test configurations (test cases) for testing the web system is as
follows:

1 Mac Opera Png
2 Mac Google Chrome Pdf
3 Windows Safari Jpg
4 Unix Android java script file
5 Linux Internet Explorer Pdf
6 Java Firefox Gif
7 Java Google Chrome html
8 Linux Safari Png
9 IOS Opera java script file
10 Linux Android Gif
11 IOS Internet Explorer Html
12 Windows Firefox Html
13 Unix Internet Explorer Gif
14 Windows Google Chrome java script file
15 Mac Firefox Jpg
16 Java Android Png
17 IOS Safari Pdf
18 Unix Opera Jpg
19 IOS Android Jpg
20 Unix Safari Html
21 Windows Opera Gif
22 Windows Internet Explorer Png
23 Linux Firefox java script file
24 Unix Firefox Pdf
25 IOS Google Chrome Gif
26 Mac Android Html
27 Java Internet Explorer Jpg
28 Java Opera Pdf
29 Java Safari java script file
30 Linux Google Chrome Jpg
31 IOS Firefox Png
32 Mac Internet Explorer java script file
33 Unix Google Chrome Png
34 Linux Opera Html
35 Mac Safari Gif
36 Windows Android Pdf

Test Techniques for the Test Analyst Page 40

Construct the test cases
The last step to take is to construct a test cases for each row in the orthogonal array. Note that
the array only specifies the input conditions. Of course a necessary part of each test case, is the
expected result for that test case.

2.10 Use Case Testing

use case testing: A specification-based test design technique in which test cases are designed to
execute scenarios of use cases.
use case: A sequence of transactions in a dialogue between an actor and a component or system
with a tangible result, where an actor can be a user or anything that can exchange information
with the system.

A use case is a sequence of actions performed in a dialogue between a user and a system, which
produces a valuable result to the system user. An use case typically has pre-conditions which need
to be met for a use case to be executed successfully. For example, a cash withdrawal cannot be
made without an open bank account, and a working automatic teller machine (ATM). Each use
case terminates with post-conditions. Post-conditions are the results and final state of the system
after the use case has been completed. An use case usually has a mainstream, most likely scenario,
such as the successful withdrawal of funds from an ATM. The use case may also contain alternative
branches such as the disapproval of a withdrawal because the user’s bankcard is unrecognized or
there is insufficient cash in the ATM.

Use case and test cases work well together. If the use cases for a system are complete, accurate,
and clear, the process of deriving the test cases is straightforward. If the use cases are not in good
shape, the attempt to derive test cases will help to debug the use cases. Use cases describe the
“process flows” through a system based on its most likely use. The test cases derived from use
cases are most useful in uncovering defects in the process flows during real-world usage of the
system. Use cases are in fact very useful for designing user acceptance tests with customer/user
participation. They also help uncover integration defects, caused by the interaction and
interference of different system components, which individual component testing would not see.

Characteristics

Test levels Integration testing, system testing, acceptance testing
Test basis Requirements (Use Cases), User Manual
Coverage No formal coverage measure
Application area User interactive systems
Typical defects Real-life defects, since the system is tested from a user

perspective. Defect may also be found related to a mismatch

Test Techniques for the Test Analyst Page 41

between the software system and business processes. Typically
functionality, but also usability and integration related defects.

Quality characteristics Usability, Functionality, Suitability, Security, Interoperability
Table 9: Characteristics Use Case Testing

Design Procedure
The design of (test) use cases can be split into a number of steps.

Identification of users of the system
During this step the user groups of the system are identified and listed. Users can be human users
but also other systems. The identified user groups are categorized and prioritized (mostly based
on the numbers). For example, a copier may have the following users:

 User Priority
 Walk-up user High
 Key operator low
 Operator Medium
 Service engineer Low

Identification use cases for every user group
Users are interviewed, and documentation such as user manual, business/user processes and
requirements specification are studied during this step. For every user group a list of typical use
cases is identified. Every use case contains a short description (one or two sentences) and
subsequently the use cases are prioritized (e.g., based on frequency). For the walk-up user of a
copier the following use cases may have been identified:

 Walk up user Priority
 Copy A4-A4 High
 Copy A4-A3 Medium
 Print email Low

Identify scenarios for every use case
Scenarios are identified for every use case. A use case usually has a basic, most likely, scenario.
This basic scenario is sometimes referred to as the “happy day” scenario. This is how the use case
is most often carried out in real-life. The use case will typically also contain alternative branches:
deviation scenarios and failure scenarios. The deviation scenarios are defined as scenarios that
are successful in terms of user results, but they are achieved in a different way, i.e. they have a
different flow of actions than the basic scenario. Failure scenarios are defined as scenarios in
which the user will encounter some problems, e.g., error messages. However, the user should in
principle be able to resolve these problems by himself. For the walk-up user and related use case
“Copy A4-A4” the following scenarios may have been identified:

Test Techniques for the Test Analyst Page 42

Test Techniques for the Test Analyst Page 43

 Use case ‘Copy A4-A4’
 Basic single side – single side
 Deviations single side – double side
 Copy of a set
 Copy by using the ADF

 Failures no paper in paper tray
 paper jam
 out of staples

Select use cases for testing
The final step in the design process is to select the use cases which will be elaborated into full
test cases. Business risk or impact is most often the important selection criteria. The selected use
cases are elaborated into full test procedures based on the following template:

- name and summary
- user group
- business importance (priority)
- pre-conditions, e.g., other use cases
- basic flow
- deviation flows
- alternative flows
- influencing other use cases
- post-conditions
- additional attention points, e.g., understandability of messages, performance issues.

Test Techniques for the Test Analyst Page 44

Hereafter you will find example of a use case associated with an ATM described as a test
procedure.

Scenario Use of ATM
System XYZ Bank ATM
Objective The goal of this use case is to test the withdrawal of cash from the ATM
Description Context: This is core functionality, so this is an important test of a frequent

usage function
 Actors: Any user may use this function Checked Comments
Preconditions The ATM is on and functional.

The user has a current debit card.

Basic flow ATM start screen is showing
1. the user inserts card
2. the user types in PIN
3. the user selects "cash with receipt"
4. the user selects £50
5. the user selects "no further service"

Expected
results

The ATM returns the card, delivers £50 and a receipt,
clears the screen and displays the start screen

Alternative
flows

The user wants to have a balance printed not
displayed. ATM start screen is showing
1. the user inserts card
2. the user types in PIN
3. the user selects "print balance"
4. the user selects "no further service"

Expected
results

The ATM returns the card and balance slip, clears the
screen and returns to start screen

Failure
conditions

On screen instructions not clearly displayed
On screen instructions not simple to follow
Card not returned (see functional tests)

Additional
attention
points

Note response times

Figure 5: Example Use case Test Procedure

3. Experience-Based Techniques

3.1 Introduction

In experience-based techniques, people’s knowledge, skills and background are a prime
contributor to the tests being executed. The experience of both technical and business people is
important, as they bring different perspectives to the testing process. Due to previous

Test Techniques for the Test Analyst Page 45

experiences with similar systems, they may have insights into what is likely go wrong, which is of
course very useful for testing. All experience-based techniques have the common characteristic
that they are based on people’s knowledge and experience, both of the system itself (including
the knowledge of users and stakeholders) and of likely defects. Test cases are typically derived in
a less systematic way, but will nevertheless be very effective.

Experience-based technique: Procedure to derive and/or select test cases based on the tester’s
experience, knowledge and intuition.

The experience-based tests may be effective at finding defects, but not as appropriate as other
techniques to achieve specific test coverage levels or produce reusable test procedures. In cases
where system documentation is poor, testing time is severely restricted or the test team has
strong expertise in the system to be tested, experience-based testing is often a good alternative
to using specification-based techniques. Experience-based testing may be inappropriate in
systems requiring detailed test documentation, high-levels of repeatability or an ability to
precisely assess test coverage. Although some ideas on coverage are presented for the
experience-based techniques discussed hereafter, experience-based techniques do not have
formal coverage criteria.

When using more dynamic approaches, e.g., Agile, testers normally use experience-based tests.
In such situations testing is typically required to be more reactive to events, and this is less
suitable with pre-planned testing approaches. In addition test execution and product evaluation
are often concurrent tasks. Beware that not all experience-based tests are entirely dynamic, i.e.,
the tests are not always created at the same time as the tester executes the test. Sometimes,
while practicing experience-based testing, testers may even implicitly use a specification-based
techniques to quickly sketch some interesting test cases.

3.2 Error Guessing

Error guessing: A test design technique where the experience of the tester is used to anticipate
what defects might be present in the component or system under test as a result of errors made,
and to design tests specifically to expose them.

Error guessing is unstructured testing. Its value lies in the unexpected; test are executed that
would otherwise not have been considered. It is a valuable add-on to specification-based test
design techniques. The experience of the tester, e.g., domain and product expertise, plays an
important role here. The tester has complete freedom to think of test cases on the spot and try
them out. The essence of error guessing is that the tester tries to find those test cases that often
are successful at finding defects – trying out these cases is the way to test them.

In principle, the only starting condition for error guessing is that the tester has an understanding
of the system under test. In addition, a certain degree a stability of the system to be tested is
needed. Error guessing is eminently suitable at the final stages of the test process. However, it

Test Techniques for the Test Analyst Page 46

should (in most cases) not be used as the only technique. The benefit of scripted testing is the
relative completeness that is achieved because of the nature of these techniques.

Scripted testing: Test execution carried out by following a previously documented sequence of
tests.

Applicability
The error guessing technique can be used at all test levels and can focus on all quality
characteristics. In practice, it is most often used at integration and system testing. It can be
applied to test in high risk areas to compliment specification-based techniques. As such it also
becomes a quality check on the effectiveness of the test process. Error guessing can also be
applied in low risk areas where spending the resources on scripted testing is not feasible, and
error guessing provides a solution to the test approach since it only uses limited resources. Using
checklist (see next paragraph) with error guessing will be helpful in guiding testing and increase
its effectiveness.

In addition to being used as a test technique, error guessing is also useful during product risk
analysis to identify potential failure modes. It can for instance be applied to sample test initial
increments and based on the results drive product risk-analysis and further testing. Error
guessing can also be used effectively to test new software for common mistakes and defects
before starting more rigorous and scripted testing.

Error guessing is often also fun and provides a good variation to scripted testing. Some teams use
error guessing as a way to close of the week; the week ends with a two hour error guessing
session.

Limitations/Difficulties
There are some clear disadvantages to error guessing such as no clear objectives, unknown
coverage, no re-usable testware and as a consequence error guessing is hard to manage. Since
there will be little test documentation another drawback with error guessing is the repeatability
of tests executed and thus the reproducibility of the defects being found. It is possible that during
error guessing defects are found whereby the test actions executed are not (exactly) known
anymore afterwards. Having logging tools in place, e.g., a record & playback tool, can partly solve
this issue.

As already stated, coverage is difficult to assess and varies widely with the capability and
experience of the test analyst. Sometimes a defect taxonomy checklist is explicitly used with error
guessing or a specific assignment (e.g., to focus on a certain test item) is provided to the tester.
This will provide some level of coverage on types of defects or system areas. In the case of using
a defect taxonomy checklist, error guessing is best used by an experienced tester who is familiar
with the types of defects that are being targeted at.

Note that since some testers do the wildest things during error guessing, e.g., extreme large
values, and as a result the test database is often not in a state to continue with regular scripted

Test Techniques for the Test Analyst Page 47

testing thereafter. It is therefore of utmost importance that when error guessing is practiced, an
efficient and effective back-up and restore procedure is available for the test database.

Coverage
When a taxonomy (or assignment) is used, coverage is determined by the appropriate types of
defects listed. Without a taxonomy (or assignment), coverage is limited by the experience and
knowledge of the tester and the time available and large unknown to (test) management.

Types of Defects
Since error guessing is totally open to the experience of the tester, all types of defect can be
found as part of error guessing. However, typical defects are usually those defined in the
particular taxonomy being targeted or “guessed” by the test analyst, that may not have been
found using specification-based testing.

Procedure

Identifying weaknesses
Preparation for error guessing typically includes an activity for identifying weaknesses. During
this activity it should also be determined whether it is necessary to construct a certain starting
situation (e.g., an initial data set) for the error guessing test. The weaknesses often stem from
errors in the mental processes of others and issues that have been forgotten. These aspects
constitute the basis for the error guessing test that is to be executed. Examples include:
- Error handling, e.g., error upon error, or interruption of a process at an unexpected moment
- Illegal values, e.g., negative numbers, null values, values that too large, strings that are too

long, or empty records
- Parts of the system that were subject to many change requests during the project
- Security issues
- Components claiming too many resources.

A plan is made for error guessing on the basis of identified weaknesses. A tester is given the
assignment to perform error guessing on a specific part / aspect of the system or type(s) of defect
during a certain period of time.

Test execution
The execution of the error guessing test depends on what needs to be tested; an interface, the
processing of a certain function, a screen lay-out, etc. It may be necessary to construct an initial
starting situation as indicated above. One also needs to decide whether to document the test
cases and the test execution flow. If the test are undocumented and will not be added to the test
set, then the initial date set may also need to be removed after execution of the error guessing
test to prevent noise at other scripted tests. However, if defects are found, the corresponding
test actions or test cases should be documented. This can be done in the format of a test
procedure, but can also be done as part the defect report. It is also important to check the set of
test cases that is already available. It is, after all, possible that the defect would have been found

Test Techniques for the Test Analyst Page 48

on the basis of test cases already available, but that the corresponding test procedure is to be
executed at a later stage.

If a tester is using error guessing on a test item that is the responsibility of another tester (a
recommended practice), then any defects found should at least be shared with the other tester
who will carry out a scripted test on that specific test item. The tester will also assess the extent
to which existing test documentation needs to be adapted, e.g., test cases added, based on the
defect(s) found.

3.3 Checklist-based testing

Checklist-based testing: An experience-based test design technique whereby the experienced
tester uses a high-level list of items to be noted, checked, or remembered, or a set of rules or
criteria against which a product has to be verified.

Checklist-based testing is an experience based test technique dependent on a preplanned “to-
do” list of tests composed by a tester based on previous testing experience. This list acts as an
authentic guide to direct the testing process.

When applying the checklist-based test technique, the experienced test analyst uses a high-level,
generalized list of items to be noted, checked, or remembered, or a set of rules or criteria against
which a product has to be verified. The “to do” list then forms the checklist which enumerates
the actions to be performed during the course of a test. Upon completion, the listed activities
are ticked off one by one. These checklists are built based on a set of standards, experience, and
other considerations. An user interface standards checklist employed as the basis for testing an
application is an example of a checklist-based test.

As another example, consider a checklist for testing the image uploading functionality:

- Check for image uploading path
- Check for image uploading
- Check for image uploading with different extensions such as JPEG or BMP
- Check for uploading images with same names
- Check if the image is getting uploaded within the maximum allowable size and if not, it

is necessary to verify that an error message is appearing
- Check if the bar showing the progress of image uploading is appearing or not
- Check the functionality of the cancel button at the time of image upload
- Check for multiple image uploading
- Check for good quality of uploaded image
- Check if the user is able to save the image post the uploading process.

Applicability
Checklist-based testing is used most effectively in projects with an experienced test team that is
familiar with the system under test and/or familiar with the area covered by the checklist (e.g.,
to successfully apply an user interface checklist, the test analyst has at least to be familiar with

Test Techniques for the Test Analyst Page 49

user interface testing but not necessarily the specific system under test). Because checklists are
high-level and tend to lack the detailed steps often found in test cases and test procedures, the
knowledge of the tester is used to fill in the gaps. By removing the detailed steps, checklists are
low maintenance and can be applied to multiple similar releases and even systems. Checklists
can be used for any level of testing. Checklists are also often used for regression testing and
smoke testing.

Checklists, like the one in the example above, are like time tested guidelines for ensuring a
thorough coverage which can take out most of the defects in the software product. Hence reusing
the test cases based on these guidelines can help in cutting down costs incurred in missing out
on important testing aspects. Checklist-based testing is also a welcome tool for companies where
meeting deadlines becomes difficult and the testers are liable to miss out on executing some
critical tests.

Sometimes innovative tests may be borne out of a project which can add value to the testing to
next releases or other projects as well. The testers working on other projects maybe ignorant of
this new set of interesting tests. This aspect is taken care of when any innovative set of tests
found out in one project become part of the test checklist to be re-executed in other projects.

Checklists can also help in better integration of new testing staffing into the organization as they
can use readymade guidelines to start testing on a project with confidence.

Difficulties
One of the problems when using checklist-based testing is that differences in interpretation of
checklist items by testers can lead to different approaches to accomplish the tasks as mentioned
in the checklist. Especially the high-level nature of the checklists can affect the reproducibility of
defects. It is possible that several testers will interpret the checklists differently and will follow
different approaches to fulfill the checklist items. This may cause different results, even though
the same checklist is used. This can result in wider coverage but reproducibility is often sacrificed.
This is especially true with complex or advanced level of tests whom are probably not suitable
for a technique like checklist-based testing. The reproducibility of the defects will, as stated,
typically be negatively affected.

Also today’s software products are regularly in need of improvements through different
upgrades. Therefore checklists have also to be upgraded and maintained on a regular basis to
comprehensively cover testing of all the new aspects related to the product of similar
functionalities. Checklists can be derived from more detailed test cases or lists and tend to grow
over time. Maintenance is required to ensure that the checklists are covering the important
aspects of the system being tested.

Finally, checklists come handy as an arrangement for some additional or last grasp testing. Its
utility is questionable for holistic testing over the entirety of the software development life cycle
with most software products, especially critical ones.

Test Techniques for the Test Analyst Page 50

Coverage
The coverage is as good as the checklist but, because of the high-level nature of the checklist, the
results will vary based on the test analyst who executes the checklist. Checklists may therefore
also result in over-confidence regarding the level of coverage that is achieved since the actual
testing depends on the tester’s judgment.

Typical defects
Since checklist-based testing is totally dependent on the nature of the checklist, all types of defect
can be found as part of checklist-based testing. However, typical defects found with this
technique include failures resulting from varying the data used with the checklist, the sequence
of steps or the general workflow during testing. Using checklists can help keep testing fresh as
new combinations of data and processes are allowed during testing.

3.4 Exploratory testing

Exploratory testing: An informal test design technique where the tester actively controls the
design of the tests as those tests are performed and uses information gained while testing to
design new and better tests.

Exploratory testing is a powerful approach. In some situations, it can be orders of magnitude
more productive than scripted testing. All testers practice some form of exploratory testing,
unless they simply do not create tests at all. Among the hardest things to explain is something
that everyone already knows. We all know how to listen, how to read, how to think, and how to
tell anecdotes about the events in our lives. As adults, we do these things every day. Yet the level
of any of these skills, possessed by the average person, may not be adequate for certain special
situations. Psychotherapists must be expert listeners and lawyers expert readers; research
scientists must scour their thinking for errors and journalists report stories that transcend parlour
anecdote. So it is with exploratory testing (ET): the simultaneous design and execution of tests.
This is a simple concept. But the fact that it can be described in a sentence can make it seem like
something not worth describing. Its highly situational structure can make it seem, to the casual
observer, that it has no structure at all. However, exploratory testing can be as disciplined as any
other intellectual activity. Many organizations practice a formalised process of exploratory
testing, and session-based test management is a method specifically designed to make
exploratory testing auditable and measurable on a large scale.

What makes exploratory testing interesting is that it when a tester has the skills to listen, read,
think and report, rigorously and effectively, without the use of pre-scripted tests, the exploratory
approach to testing can be many times as productive as the scripted variety (predefined test
procedures, whether manual or automated). And when properly supervised and chartered, even
testers without special skills can produce useful results that would not have been anticipated by
a script. Of course, tests may be worth reducing to a repeatable scripted form for a variety of
good reasons. There may be special accountability requirements, perhaps, or maybe there are
certain tests that must be executed in just the same way, every time, in order to serve as a kind
of benchmark. In some contexts, test objectives are achieved better through a more scripted

Test Techniques for the Test Analyst Page 51

approach; in other contexts, test objectives will benefit more from the ability to create and
improve tests as tests are being executed. Most situations benefit from a mix of scripted and
exploratory approaches.

Cem Kaner who has introduced the term Exploratory Testing (ET) to the testing industry describes
it as any testing to the extent that the tester actively controls the design of the tests as those
tests are performed and uses information gained while testing to design new and better tests,
and where the following conditions apply:

- The tester is not required to use or follow any particular test materials or procedures
- the tester is not required to produce materials or procedures that enable test re-use by

another tester or management review of the details of the work done [Kaner].

Exploratory testing is an interactive test process. It is a free-form process in some ways and has
much in common with informal experience-based test techniques such as error guessing.
However, unlike traditional informal testing, this procedure consists of specific tasks, objectives,
and deliverables that make it a systematic process.

The puzzle analogy
Have you ever solved a jigsaw puzzle? If so, you have practised exploratory testing. Consider what
happens in the process. You pick up a piece and scan the jumble of unconnected pieces for one
that goes with it. Each glance at a new piece is a test case (“Does this piece connect to that piece?
No? How about if it is turned around? Well, it almost fits but now the picture doesn’t match...”).
You may choose to perform your jigsaw testing process more rigorously, perhaps by
concentrating on border pieces first, or on certain shapes, or on some attribute of the picture on
the cover of the box. Still, can you imagine what it would be like to design and document all your
jigsaw “test cases” before you began to assemble the puzzle, or before you knew anything about
the kind of picture formed by the puzzle? When we solve a jigsaw puzzle, we change how we
work as we learn about the puzzle and see the picture form. This is a general lesson about puzzles:
the puzzle changes the puzzling. The specifics of the puzzle, as they emerge through the process
of solving that puzzle, affect our tactics for solving it. This truth is at the heart of any exploratory
testing,

Exploratory testers ask, “What’s the most powerful test I can perform, right now?” The power of
a test is how much useful information it reveals about the product. The product and many factors
around it change continuously throughout the course of the project, or even from moment to
moment during a test session. The power of exploratory tests can be optimised throughout the
test process, whereas test procedures, because they don’t change, tend to become less powerful
over time. They fade for many reasons, but the major reason is that once a scripted test has been
executed for the first time and not found a defect, the chance that you will find a defect on its
second execution is, in most circumstances, substantially lower than if you ran a new test instead.

Test Techniques for the Test Analyst Page 52

Applicability
In general, ET is called for in any situation where it is not obvious what the next test should be,
or when you want to go beyond the obvious tests. More specifically, pure exploratory testing fits
in any of the following situations:

- You need to provide rapid feedback on a new product or feature
- You need to learn the product quickly
- You have already tested using scripts and seek to diversify the testing
- You want to find the single most important bug in the shortest time
- You want to check the work of another tester by doing a brief independent investigation
- You want to investigate and isolate a particular defect
- You want to investigate the status of a particular risk, in order to evaluate the need for

scripted tests in that area.

Limitation/Difficulties
ET is powerful because of how the information flows backward from executing testing to re-
designing them. Whenever that feedback loop is weak, or when the loop is particularly long, slow,
or expensive, ET loses that power. In these situations, pre-scripted tests may be the preferred
option. Another place to use scripted tests is in any part of our testing that will be subjected to
extreme retrospective scrutiny. But do not just settle for scripted testing just because they please
the auditors. Consider using a combined exploratory and scripted approach, and get the best of
both worlds.

In addition to the ones already mentioned, there are other situations where applying ET may not
be the preferred option:

- Testing detailed and complex calculation; in such circumstances test cases with expected
results are required and may take some time to develop

- Testing most critical features; in some safety-critical areas assurance is needed on the
coverage achieved

- Testing reliability / performance; these type of testing often need a lot of preparation,
e.g., designing operational profiles, defining test cases and creating test data

- Testware is important; in ET less re-usable is build, if this is important, e.g., as a basis for
test automation, more scripted testing will be needed

- Test automation, e.g., as a basis regression testing, is an important objective
- Testers are less skilled; of course ET builds on the skills of the testers as any of the

experienced-based techniques.

As with error guessing, since with ET there will be less test documentation compared to scripted
testing, repeatability of tests executed and thus the reproducibility of the defects being found
could be a problem. However, since some test documentation is produced with ET, this usually
is less of a problem than with error guessing.

Finally with ET, test design as an early static test technique debugging the requirements is lost.
The defects found in the test basis while doing test design are often by themselves already a
justification for a structured test design phase using specification-based techniques.

Test Techniques for the Test Analyst Page 53

Coverage
Charters are created to specify objectives and tasks. Exploratory sessions are then planned based
on the charters to achieve those objectives. The charter may also identify where to focus the
testing effort, what is in and out of scope of the test session, Sometimes the scope is defined in
terms of requirements, allowing for traceability from test charters to requirements and tracking
requirements coverage with ET. A session may be also used to focus on particular defect types
or other potentially problematic areas that can be addressed without the formality of scripted
testing.

Type of defects
In principle all types of defects can be found with exploratory testing. However, typical defects
found with exploratory testing are scenario-based issues that were missed during scripted
functional testing, issues that fall between functional boundaries, and workflow related issues.
Security issues are also sometimes uncovered during exploratory testing.

Practicing exploratory testing
The external structure is easy enough to describe. Over a period of time, a tester interacts with
a product to fulfil a test mission, and reports results. The basic external elements of ET thus are:
time, tester, product, mission, and reporting. The mission is fulfilled through a continuous cycle
focusing on the mission, conceiving questions about the product that if answered would also
allow the tester to satisfy the mission, designing tests to answer those questions, and executing
tests to get the answers. Often the tests don’t fully answer the questions, so tests are adjusted
to keep trying (in other words, exploration). The exploratory tester is at any time ready to report
on status and results.

Test charters
An exploratory test session often begins with a charter, which states the mission and perhaps
some of the tactics to be used. The charter may be chosen by the tester himself, or assigned by
the test lead or test manager. Most often charters are documented. In some organizations, test
cases and procedures are documented on a high-level only, as a consequence they essentially
serve as charters for exploratory testing.

Test charter: A statement of test objectives, and possibly test ideas about how to test. Test
charters are used in exploratory testing.

Test charters can take a format of only one sentence, such as the examples hereafter. However
often they are a one page summary describing the testing that needs to be done on an item or
feature. These one page test charters commonly describe the following topics under a number
of headings (see figure 6 for an example):

- What – What needs to be tested and is within the scope of the test charter, e.g., bullet
list and numbering in Word. Both through menu and right mouse click

- What not – What is explicitly not within scope, e.g., non-functionals since they are already
tested by a dedicated other test

Test Techniques for the Test Analyst Page 54

- Why – What are the questions that need to be answered, e.g., to verify that the bullet
lists are consistent and to check the correct numbering. The “Why” can also be used to
reference specific requirement that need to be covered.

- How – This is usually the result of a short brainstorm and defined in free format test ideas
that can be used later, e.g., use a word document, use .dot file, new/existing doc. using
right mouse button, menu bar / imported doc.

- Expected Problems –This resemble the “How” but changes the mindset of the brainstorm
stakeholders, what is likely to fail?, where can one find defects?, etc.

- Reference – A reference to relevant documentation, e.g., diagrams or models

Some examples of one sentence test charters mentioned earlier:

- Define workflows through XYZ and try each one. The flows should represent realistic
scenarios of use, and they should collectively encompass each primary function of the
product

- Test all fields that allow data entry (you know the drill: function, stress, and limits,
please)

- Run XYZ with browser ABC and report any defects.
- Check the user-interface against Windows interface style guide.

Test Charter Search Engine
● What: Search Engine to look up other sources of information in the company (list of

sample information sources: A, B, C etc.). Standard and Advanced search must be
tested.

● Why: To test the search feature with single information sources and multiple sources,
to see that the retrieved information is presented consistently and according to
standard, and that the retrieved information is correct.

● How: Search from the WEB portal as well as continue searching in the result list
(advanced search – refining the search).

● Expected problems: Some information not found, Not possible to navigate to
information found (jumping between information sources), Information found not
presented consistently independent of sources.

● References: Requirement specification section x.11.
Figure 6: Example Test Charter

Note that typically test charters are ambiguous. They are intended to communicate the mission
of a test session to testers who have already been trained in the expectations, vocabulary,
techniques and tools used by the organization. Remember, in ET we make maximum use of skill,
rather than attempting to represent every action in written form.

In pure exploratory testing, the only result that comes from an ET session is a set of defect
reports. However, ET sessions may also results in a set of written notes that are reviewed by the
test manager. It may also result in updated test materials or new test data. If you think about it,
most written test procedures were probably created through a process of some sort of
exploratory testing.

Test Techniques for the Test Analyst Page 55

The outer trappings, inputs and outputs to exploratory testing are worth looking at, but it is the
inner structure of ET that matters most - the part that occurs inside the mind of the tester. That’s
where ET succeeds or fails; where the excellent explorer is distinguished from the amateur. This
is a complex subject, but here are some of the basics:
- Test Design: An exploratory tester is first and foremost a test designer. Anyone can design a

test accidentally; the excellent exploratory tester is able to craft tests that systematically
explore the product. That requires skills such as the ability to analyse a product, evaluate
risk, use tools, and think critically, among others.

- Careful Observation: Excellent exploratory testers are more careful observers than novices,
or for that matter, experienced scripted testers. The scripted tester need only observe what
the script tells him to observe. The exploratory tester must watch for anything unusual or
mysterious. Exploratory testers must also be careful to distinguish observation from
inference, even under pressure, lest they allow preconceived assumptions to blind them to
important tests or product behaviour.

- Critical Thinking: Excellent exploratory testers are able to review and explain their logic,
looking for errors in their own thinking. This is especially important when reporting the status
of a session of exploratory tests, or investigating a defect.

- Diverse Ideas: Excellent exploratory testers produce more and better ideas than novices.
They may make use of heuristics to accomplish this. Heuristics are mental devices such as
guidelines, generic checklists, mnemonics, or rules of thumb. The Satisfice Heuristic Test
Strategy Model (http://www.satisfice.com) is an example of a set of heuristics for rapid
generation of diverse ideas. James Whittaker’s set of attacks is another [Whittaker]. The
diversity of tester temperaments and backgrounds on a team can also be harnessed by savvy
exploratory testers through the process of group brainstorming to produce better test ideas.

- Rich Resources: Excellent exploratory testers build a deep inventory of tools, information
sources, test data, and friends to draw upon. While testing, they remain alert for
opportunities to apply those resources to the testing at hand.

Procedure
The fact that exploratory testing is hard to manage is often cited as a big disadvantage. To solve
this issue an approach to ET has been developed called: session-based test management. The
approach has been developed based on discussions between ET experts, but especially taking
into account contributions from ET practitioners. A systematic process has been defined that
shows ET can be applied in a structured way [Veenendaal]. This process is reflected in figure 7
and briefly explained hereafter.

Test Techniques for the Test Analyst Page 56

Figure 7: Process flow Exploratory Testing

Since ET is only one of the many ways to test a system, also a project applying ET as a test
technique will start by executing a product risk assessment. The results will be used to make clear
choices regarding test coverage and test depth required and to decide on which parts of the
system under test ET will be applied. Subsequently the preparation is started by establishing test
charters for specific test items. Test charters will often be produced using brainstorm sessions
with various stakeholders to document the most important attention points and test ideas for
the exploratory tests to be executed (refer to figure 6 for an example of a test charter). A test
charter can even be perceived as a high level test design document.

On the basis of test charters, test session are performed during which the tester becomes
acquainted with the new product and at the same time designs and executes test cases. Test
charters are used to guide the test sessions. A session is an uninterrupted period of time between
two hours and one day. During the test session, working in pairs, the test actions are documented
(along defined guidelines) in the form of notes. This makes the tests reusable and defect
reproduceable to a certain degree. Re-testing a test item can then take place partly based on the
notes of a previous session if required. The notes can also be used as a basis for developing more
detailed testware. The notes will commonly contain details of the tests executed, a list of defects
found and other observations and a general conclusion. Test sessions are typically performed by

Charter

Sessions
- Exploration
- Design
- Execution

Debriefing

Heuristics
- Boundaries
- CRUD
- configurations
-

Test Techniques for the Test Analyst Page 57

two person that stimulate each other in thinking of interesting test cases. When working in pairs
one tester will execute the tests, while the other tester makes notes. Whilst the sessions takes
place guided by a test charter, also so-called heuristics and checklist of common defects are used
as a supporting tool.

When the test session has ended a debriefing takes place involving fellow testers and other
interested parties. Experiences with the product, e.g., new product risks identified, are discussed,
and test ideas and defects found are exchanged. In the context of exchanging ideas the question
“What is the most important defect you have encountered today?” may be asked. At the end of
the debriefing session the team decides what are the important items or features that should be
tested next. A new test session will start based on a test charter and the next exploratory test
session begins. Note how much a debriefing session resembles a daily stand-up daily meeting
commonly used in Agile projects, again showing that ET has a perfect fit within these projects.

Test Techniques for the Test Analyst Page 58

References

[Copeland] L. Copeland (2003), A Practitioner’s Guide to Software Test Design, Artech House

[Cohn] M. Cohn (2004), User Stories Applied: For Agile For Agile Software Development, Pearson
Education

[Foundations] R. Black, E. van Veenendaal and D. Graham (2012), Foundations of Software
Testing – ISTQB Certification 3rd edition, Cengage Learning,

[Grochtmann] M. Grotchmann and K. Grimm (1993), Classification Trees for Partition Testing, in:
Software Testing, Verification and Reliability, Vol. 3, no. 2, June 1993

[ISTQB] ISTQB (2016), Worldwide Software Testing Practices Report 2015-2016, International
Software Testing Qualifications Board

[Kaner] C. Kaner, J. Falk and H. Nguyen (1999), Testing Computer Software – 2nd edition, John
Wiley and Sons

[Kit] E. Kit (1995), Software Testing in the Real World, Addison-Wesley, London

[Mors] N.P.M. Mors (1993), Decision Tables (in Dutch), Lansa Publishing BV

[Myers] G.J. Myers (1979), The Art of Software Testing, Wiley-Interscience, New York

[Veenendaal] E. van Veenendaal (2004), Exploratory Testing: Meaningful or Meaningless (in
Dutch), in: Software Release Magazine, Year 9, November 2004, No. 7

[Whittaker] J. A. Whittaker (2002), How to Break Software: A Practical Guide to Testing, Pearson
Education

Test Techniques for the Test Analyst Page 59

The Complete Book “The Testing Practitioner”

The book The Testing Practitioner has been written as a
background book to the ISTQB Advanced syllabi. The Testing
Practitioner provides a comprehensive description of the
state-of-art in software testing and in addition addresses a
number of challenges and topics for the test practitioner.
Offering insights from leading experts in testing, each chapter
in this book has been extensively reviewed for technical
content, assuring that it is accurate and time-worthy. The
seven section of The Testing Practitioner cover materials
found essential for test engineers and test managers working
in real-world businesses. Following the syllabi this book deals
with test principles, test process, test management, risk
management, inspections and reviews, test techniques (both
functional and non-functional), test process improvement,
tools and people issues. Some of the specific topics included
are test planning, risk based testing, completion criteria,

estimation, static analysis, exploratory testing, performance testing, usability testing and data
driven testing.

This book is intended to meet the practical needs of both test engineers and test managers,
especially those preparing for the ISTQB Advanced Test Analyst or Test Manager exam. A great
reference for the new and experienced test practitioner applying test principles and structured
testing to software development. This book may not contain all the answers you need, but is will
surely set you of in the right direction.

Order on-line via Amazon

https://www.amazon.co.uk/Testing-Practitioner-Erik-van-Veenendaal/dp/9072194659/ref=sr_1_1?s=books&ie=UTF8&qid=1519807604&sr=1-1&keywords=testing+practitioner

Test Techniques for the Test Analyst Page 60

The Author

Drs. Erik van Veenendaal, CISA (www.erikvanveenendaal.nl), is a
leading international consultant and trainer, and a recognized expert in
the area of software testing and requirement engineering. Erik is the (co-
)author of numerous papers and a number of books on software quality
and testing. He is a regular speaker, e.g., running a tutorial on test design
techniques, at both national and international testing conferences and a
leading international trainer in the field of software testing.

Since its foundation in 2002, Erik has been strongly involved in the
International Software Testing Qualifications Board (ISTQB). From 2005 to 2009, he was the vice
president of the ISTQB organization; he currently is the president for the Curaçao Testing
Qualifications Board (CTQB).

Erik one of the core developers of the TMap test methodology and the TMMi test improvement
model, and currently the CEO of the TMMi Foundation. For his major contribution to the field of
testing, Erik received the European Testing Excellence Award (2007) and the ISTQB International
Testing Excellence Award (2015). You can follow Erik on twitter via @ErikvVeenendaal.

Enjoyed this eBook and
want to read more?

Check out our extensive
library on Huddle.

www.eurostarsoftwaretesting.com

Click Me To Visit
Huddle

https://twitter.com/testhuddle
https://www.youtube.com/user/EuroSTARConference
https://www.linkedin.com/company/eurostar-conferences
https://www.facebook.com/EuroSTARSoftwareTestingConference
https://huddle.eurostarsoftwaretesting.com

	ES_Huddle_2018_eBook_Test_Techniques_For_The_Test_Analyst
	Test Techniques for the Test Analist PDF
	Test Techniques for the Test Analist
	Test techniques have been around for many years. They are taught as part of ISTQB classes and are used explicitly or implicitly by most testers. There are many sources of information with respect to test techniques, their methods and coverage measures...
	Specification-based test techniques have a more-or-less standard procedure for deriving test cases from requirements specification and design documents. For each specification-based technique described, a list of characteristics is provided and the le...
	1. An introduction to Test Techniques
	1.1 Different types of Techniques
	1.2 Agile
	In Agile testing, many tests are created by testers concurrently with the developers’ programming activities. Just as the developers are programming based on the user stories and acceptance criteria, so are the testers creating tests based on user st...
	2. Specification-Based Techniques
	2.1 Introduction
	2.2 Equivalence Partitioning
	2.3 Boundary Value Analysis
	Applicability

	2.4 Decision Table Testing
	Things to remember with collapsed tables:

	2.5 Cause-Effect Graphing
	Cause-effect graphing: A black box test design technique in which test cases are designed from cause-effect graphs.
	Cause-effect graph: A graphical representation of inputs and/or stimuli (causes) with their associated outputs (effects), which can be used to design test cases.
	Applicability
	Car Insurance
	If the car is small (less than 1.4l) or the owner lives in Bonaire, offer Cheap insurance. If the car is large (more than 2.0l) offer the Executive Options package.
	Figure 2: Cause-effect graph “Car Insurance”

	2.6 State Transition Testing
	2.7 Combinatorial Test Techniques
	2.8 Classification Tree Method
	2.9 Pairwise Testing
	2.10 Use Case Testing
	Identification of users of the system
	Identification use cases for every user group
	Identify scenarios for every use case
	Select use cases for testing

	3. Experience-Based Techniques
	3.1 Introduction
	3.2 Error Guessing
	3.3 Checklist-based testing
	Applicability

	Checklists, like the one in the example above, are like time tested guidelines for ensuring a thorough coverage which can take out most of the defects in the software product. Hence reusing the test cases based on these guidelines can help in cutting ...
	3.4 Exploratory testing
	Applicability
	Practicing exploratory testing

	Blank Page
	Test Techniques for the Test Analist PDF.pdf
	Test Techniques for the Test Analist
	Test techniques have been around for many years. They are taught as part of ISTQB classes and are used explicitly or implicitly by most testers. There are many sources of information with respect to test techniques, their methods and coverage measures...
	Specification-based test techniques have a more-or-less standard procedure for deriving test cases from requirements specification and design documents. For each specification-based technique described, a list of characteristics is provided and the le...
	1. An introduction to Test Techniques
	1.1 Different types of Techniques
	1.2 Agile
	In Agile testing, many tests are created by testers concurrently with the developers’ programming activities. Just as the developers are programming based on the user stories and acceptance criteria, so are the testers creating tests based on user st...
	2. Specification-Based Techniques
	2.1 Introduction
	2.2 Equivalence Partitioning
	2.3 Boundary Value Analysis
	Applicability

	2.4 Decision Table Testing
	Things to remember with collapsed tables:

	2.5 Cause-Effect Graphing
	Cause-effect graphing: A black box test design technique in which test cases are designed from cause-effect graphs.
	Cause-effect graph: A graphical representation of inputs and/or stimuli (causes) with their associated outputs (effects), which can be used to design test cases.
	Applicability
	Car Insurance
	If the car is small (less than 1.4l) or the owner lives in Bonaire, offer Cheap insurance. If the car is large (more than 2.0l) offer the Executive Options package.
	Figure 2: Cause-effect graph “Car Insurance”

	2.6 State Transition Testing
	2.7 Combinatorial Test Techniques
	2.8 Classification Tree Method
	2.9 Pairwise Testing
	2.10 Use Case Testing
	Identification of users of the system
	Identification use cases for every user group
	Identify scenarios for every use case
	Select use cases for testing

	3. Experience-Based Techniques
	3.1 Introduction
	3.2 Error Guessing
	3.3 Checklist-based testing
	Applicability

	Checklists, like the one in the example above, are like time tested guidelines for ensuring a thorough coverage which can take out most of the defects in the software product. Hence reusing the test cases based on these guidelines can help in cutting ...
	3.4 Exploratory testing
	Applicability
	Practicing exploratory testing

	Test Techniques for the Test Analyst final eBook.pdf
	Test Techniques for the Test Analist
	Test techniques have been around for many years. They are taught as part of ISTQB classes and are used explicitly or implicitly by most testers. There are many sources of information with respect to test techniques, their methods and coverage measures...
	Specification-based test techniques have a more-or-less standard procedure for deriving test cases from requirements specification and design documents. For each specification-based technique described, a list of characteristics is provided and the le...
	1. An introduction to Test Techniques
	1.1 Different types of Techniques
	1.2 Agile
	In Agile testing, many tests are created by testers concurrently with the developers’ programming activities. Just as the developers are programming based on the user stories and acceptance criteria, so are the testers creating tests based on user st...
	2. Specification-Based Techniques
	2.1 Introduction
	2.2 Equivalence Partitioning
	2.3 Boundary Value Analysis
	Applicability

	2.4 Decision Table Testing
	Things to remember with collapsed tables:

	2.5 Cause-Effect Graphing
	Cause-effect graphing: A black box test design technique in which test cases are designed from cause-effect graphs.
	Cause-effect graph: A graphical representation of inputs and/or stimuli (causes) with their associated outputs (effects), which can be used to design test cases.
	Applicability
	Car Insurance
	If the car is small (less than 1.4l) or the owner lives in Bonaire, offer Cheap insurance. If the car is large (more than 2.0l) offer the Executive Options package.
	Figure 2: Cause-effect graph “Car Insurance”

	2.6 State Transition Testing
	2.7 Combinatorial Test Techniques
	2.8 Classification Tree Method
	2.9 Pairwise Testing
	2.10 Use Case Testing
	Identification of users of the system
	Identification use cases for every user group
	Identify scenarios for every use case
	Select use cases for testing

	3. Experience-Based Techniques
	3.1 Introduction
	3.2 Error Guessing
	3.3 Checklist-based testing
	Applicability

	Checklists, like the one in the example above, are like time tested guidelines for ensuring a thorough coverage which can take out most of the defects in the software product. Hence reusing the test cases based on these guidelines can help in cutting ...
	3.4 Exploratory testing
	Applicability
	Practicing exploratory testing

