l QUALITY SERVICES

Practical Risk-Based Testing
Product RISk MAnagement: the PRISMA® method

Drs. Erik P.W.M. van Veenendaal CISA
January, 2018

© 2018 Improve Quality Services BV 1

Table of Content

I 1 0T [T i To] o [P PP PPPPUPPPRRRTR 3.
P o o o L8 [o 1S N 00 F= Vg F= Vo =T 0= oL PR RSOOSR 3
G J € To To o J=T g To 0o | IR 1= TS] 114 T RS 4
O I T (=3 1] T o] =Y T o = P 6
5. The most important parts of the ProAUCT...........euuieiiiiiiiieeee e e 7
6. The worst areas Of the PrOUUCT............euiiiiiiiie e e e reaaaeeeaeeaaenan 9
7. THE PRISIMA PIOCESS. ... ututtttttttitttttttttaaaaaatettasiaaasutaaeeerrettaataaaaaaeasesiaaaaaasstesterrrerreetaeeeeeesseninnannannnrnnes 12
4% o = 1 11 o TP UUPUUUU PR 13
A (o1 o | PP PUPPRRRPPP 51
7.3 INAIVIdUAI Preparationoiiooiiiiiiii ettt ettt et ee e e e e e aaeeeeaa e nnnneeneeneeeees 15
7.4 Gather INAIVIAUAI SCOIES.uuiiiiiiiiiee ettt e e e e e e e e e e e e e et e e e e e aaaaaaeeaens 17
7.5 CONSENSUS MEETING.teeeeeeeeteteeeae e e e e e ettt ettt et e e e aa e e e e e e s e e s e s e e neaabbeebeeeeeeeeeaaaaaseesaaaaannnnsansnesenees 18
7.6 Define a differentiated teSt apPrOACK..........cccuuuiiiiii e 19
8. Practical experiences With PRISIMAt r e e e e e e e e e e e e e e s e s s s e reeeneees 20
8.1 Results for the Usefulness of PRISIMAL..... ...t e e e 21
8.2 Results for the Ease-0f-Use Of PRISMA ...ttt e e 21
Yot 0111 (=T o =T 0 1T £ 23
Sy =] (= 1oL PSPPI 23
T g 1= G =T Uo 1o PSP 23
LI L3211 2T O PPPPRPRTT 24
ANNEX: CalCulation EXAMPIE...... ... e ettt e e e ettt ee et e e e e e e e e e e e e e e e e anns 25

© 2018 Improve Quality Services BV 2

1. Introduction

Often the activities prior to test execution ardaged. This means testing has to be done
under severe pressure. It would be unthinkableuib the job, to delay delivery or to test
badly. The real answer is a differentiated testraggh in order to do the best possible job
with limited resources. Which part of the systeexguires most attention? There is no unique
answer, and decisions about what to test have tiskd#ased. There is a relationship between
the resources used in testing and the cost of Mindiefects after testing. There are
possibilities for a stepwise release. The gengyptaach is to test some important functions
that hopefully can be released, while delaying ithe

At system level, one probably has to test first whanost important in the application. This
can be determined by looking at visibility of fuioets, at frequency of use and at the possible
cost of failure. Secondly, one has to test where oray find most defects. This can be
determined by identifying defect prone areas in phneduct. Project history gives some
indication, and product measures give more. Usoth,lone finds a list of areas to test more
and those to test less. After test execution hagest and one has found some defects, one
may analyse these in order to focus testing evere raiod tune the test approach. The idea is
that defects clump together in defect prone at@ad that defects are a symptom of particular
trouble the developers had. Thus, a defect leatlset@onclusion that there are more defects
nearby, and that there are more defects of the &amde Thus, during the latter part of test
execution, one should focus on areas where ddfiewts been found, and one should generate
more tests aimed at the type of defect detectentdef

2. Product risk management

This paper describes a method for identifying theas that are most important to test; the
items that have the highest level of risk. The BovdRISk MAnagement (PRISMA!
method has been develop in practice and is beiplieaipn many projects and companies in a
wide range of industries. The PRISMA method suptité test manager in doing risk-based
testing, especially for the risk identification arahalysis in close co-operation with
stakeholders.

The PRISMA method can be used at every level dingse.g. component, integration,
system, and/or acceptance testing. It can be a@pptidoth organizational and project level.
On an organizational level the method can be usedidress properties that are common for
most projects in the organisation or for a develepnprogram. The result can be documented
as part of the overall test strategy, which cacdesidered as a blue print to be applied by the
projects. On a project level, the product risk gsial is input for the projects’ test approach
documented in a test plan. Note that PRISMA is ¢hotefor product risk management, not
for project risks. In practice it is often the camdtion of product risks and project risks that
determines the detailed test approach.

Product risk analysis should be used to deterntiaeappropriate test approach and to select
test design techniques in such a way that the iteitihsthe highest risks are tested first and
more intensively than the areas with low risk. Thput of the risk analysis may even also

! A tool is available to support the PRISMA methad @roduct risk management process.

© 2018 Improve Quality Services BV 3

influence the development approach, e.g. developigh risk areas as part of an initial
increment to allow early testing or assigning thestrexperienced engineers to higher risk
areas.

Risk tracking should be done throughout the projd@détis can be done by periodically

repeating (part of) the risk analysis and validatitne initial risk analysis. Also test

monitoring and control, including reporting, shoué organised around these risks. Too
often initially risks are identified and never lazkat again further on in the project.

3. Good enough testing

At a closer look risk based testing, and therefms® PRISMA, are highly related to the
concept of good enough testing. James Bach intemtitlee idea in 1997 (Bach, 1997) and it
has caused some division in the testing commuattyeast. On one side of the fence, some
experts think it's a cop-out; a compromise too fés;too simplistic to be useful; it promotes
shoddy work; and so on. On the other hand, its @ters promote it as something that
reflects what we do in real life where somethingsléhan a “perfect” solution is inevitable.
The good enough approach is helpful to understgnthie risk-based test approach. It is a
good framework for the (release) decision-makingpiojects where risks are being taken.
Were you ever asked as a tester, “is the systerd goough to ship?” When the time comes
to make the big decision, how could you answer dgjuastion? If you say, “well, it's just not
ready”, the project manager just thinks, “testénsags say that, they’'re never happy” and you
are dismissed as a pessimist. Suppose you sayl|,“¥Mebks ready to me”, will your project
manager put a piece of paper under your nose, @skio to sign it? If you sign, are you
taking someone else’s responsibility? So, whag®t enough?” and how does it help with
the risk based testing?

“Good enough” is a reaction to the formalism intites theory. It's not reasonable to aim at
zero-defects (at least in software), so why do yiend to yourself and pretend to the users
and customers that you're aiming at perfection? Zém-defect attitude just doesn’t help.
Your customers and users live in the real worldywbn’t we? Compromise is inevitable,
you always know it's coming, and the challenge dh&ato make a decision based on
imperfect information. As a tester, don’t get upégbur estimates are cut down or your test
execution phase is squeezed. Guilt and fear shmtlthe inevitable just because a project is
constrained for budget and resources and has inanezero defects remaining.

The definition of “good enough” in the context obgstem (or increment / enhancement) to
be released is:
1. It has sufficient benefits;
2. It has no critical problems;
3. lIts benefits sufficiently outweigh its non-critigatoblems;
4. In the present situation, and all things considedsdaying its release to improve it
further would cause more harm than good.

This definition means that there is already enooghhis product working (this system,
increment or enhancement) for us to take it intodpction, use it, get value, and get the
benefit. “It has no critical problems” means thhere are no severe faults that make it
unusable or unacceptable. At this moment in timigh &ll things considered, if we invest
more time or money trying to perfect it that willobably cost us more than shipping early

© 2018 Improve Quality Services BV 4

with the known problems. This framework allows ag¢lease an imperfect product on time
because the benefits may be worth it. So how dekdased testing fit into this good enough
idea?

Firstly, have sufficient benefits been deliveredf?e Ttests that we execute must at least
demonstrate that the features providing the beneafie delivered completely, so we must
have evidence of this. Secondly, are there anycariproblems? The incident reports that

record failures in software provide the evidencatdeast the critical problems (and as many
other problems as possible). There should be nairproblems for it to be good enough.

Thirdly, is our testing good enough to support thecision? Have we provided sufficient

evidence to say these risks are addressed and bieosdits are available for release? In
essence these questions are all about balanciegdisyy the resources on testing to deliver
good enough quality and acceptable level of risk.

Quality
& risks

Figure 1: Balancing testing with quality & risks

Who decides?
It is not a tester’s responsibility to decide wlegtithe product is good enough. An analogy
that might help here is to view the tester as goedxwitness in a court of law. The main
players in this familiar scene are:

- the accused (the system under test)

- the judge (project manager)

- the jury (the stakeholders)

- expert witness (the tester).

In our simple analogy, we will disregard the lawgjerole. We will assume that the
prosecution and defence are equally good at ekitpatvidence from witnesses and
challenging “facts” and arguments. We will focustbe expert witness role; these are people
who are brought into a court of law to present arglain complex evidence in a form for
laymen (the jury) to understand. The expert witmasist be objective and detached. If asked
whether the evidence points to guilt or innocertke,expert explains what inferences could
be made based on the evidence, but refuses to.judfee same way, the tester might simply
state that based on evidence “these features Wwrke features do not work, these risks have
been addressed, these risks remain”. It is forrsth@ judge whether this makes a system
acceptable.

© 2018 Improve Quality Services BV 5

The tester is there to provide information for Htakeholders to make a decision. After all,
testers do not create software or software fatdtsters do not take the risks of accepting a
system into production. Testers present to theinagament and peers an informed and
independent point of view. When asked to judge tdret product good enough, the tester
might say that on the evidence obtained, thesefibeaee available, but these risks still exist.
However, if as a tester you are actually asked a@erthe decision, what should you do? The
answer is that you must help the stakeholders nttakealecision, but not make it for them.
The risks, those problems that we thought say 6tinsoago could occur, and which in your
opinion would make the system unacceptable, migjhegist. If those were agreed with the
stakeholders at that time, the system cannot nowadseptable, unless they relax their
perceptions of the risk.

The judgement on outstanding risks must be asvistio
- there is enough test evidence now to judge th&icerisks have been addressed.
- there is evidence that some features do not whekr(sk has materialized).
- some risks (doubts) remain because of lack of exelétests have not been run, or no
tests are planned).

This might seem less than ideal as a judgementjsbpteferable to the unrealistic, ideal-
world acceptance criteria discussed earlier. Yoy stél be forced to give an opinion on the
readiness of a system but we believe that by takng principled position as an expert
witness (and taking it as early in the project assible) you might raise your credibility with
management. Management might then give you thé rggiponsibilities on future projects.

The Classic Squeeze on Testing

The well-known squeeze on testing occurs when #weldpers deliver late into test but the
go-live deadline remains fixed. The exit criteriaght be used to determine what happens
next, but all too often it is obvious that thesgetia cannot be met in time. The pressure to
release might be so great that the exit critereasat aside. There may be some attempt to
downgrade the severe bugs perhaps. Exit critegaaar uncomfortable reminder of the
idealistic attitude in the early stages of the @ctjbut do not make the decision any easier to
make. The risks that were apparent at the stadsting have been visible throughout. When
testing is squeezed, some risks may have beenssadresome benefits may be available,
testers may have revealed new risks to be addrdssethe outstanding risk is apparent to all
involved. If the decision to release is actuallyd@athe stakeholders have explicitly chosen to
accept a product before they have evidence thatsialh are addressed, and that all benefits
are available. This should not simply be considexed tester’'s problem. The stakeholders
have judged that they had enough information toerhkt decision.

In fact, information for making the release dedisliecomes available from the first day of
test execution onwards; it's just that the balaofceesting evidence versus outstanding risks
weighs heavily against release. A positive (thopgthaps surprising) principle for risk-based
testers is therefore that the time available fet &xecution has no bearing on your ability to
do ‘good testing'.

4. The testing challenge

The scenario is as follows: You are the test manageu have to make a plan and a budget
for testing. Your ideas were, as far as you kn@asonable and well founded. When testing

© 2018 Improve Quality Services BV 6

time approaches you might find that the produabas ready, some of your testers are not
available, or the budget is just cut. You can arggainst these cuts or argue for more time or
other resources, but that doesn’t always help. Mave to do what you can with a smaller
budget and time frame. You have to test the prodsietell as possible, and you have to make
sure it works reasonably well after release. Howsuvive? Doing bad testing will make you
the scapegoat for lack of quality. Doing reasonaidéing will make you the scapegoat for a
late release.

You need some creative solution: you have to chdhgegame. Inform your management
about the impossible task you have, in such a way they understand. But it's also
important to present alternatives. They need toagptoduct out of the door, but they also
need to understand the risk.

One strategy is to find the right quality level.tNal products need to be free of defects. Not
every function needs to work. Sometimes, you haptons related to lowering product
quality. This means you can cut down testing irs Iesportant areas. Another strategy is
priority: Test should find the most important degefirst. Most important often means “in the
most important functions”. These functions can tentl by analysing how every function
supports the objectives of the system, and cheakimgh functions are critical and which are
not. You can also test more where you expect mefects. Finding the worst areas in the
product soon and testing them more will give yourendefects. If you find many serious
problems, management will often be motivated toegyou more time and resources. In
practice it is often about a combination of mospartant (discussed in section 5) and worst
(discussed in section 6) area priority. Risk bassting should take care that whenever the
team has to stop testing, they have done the éststq is the time available.

5. The most important parts of the product

Testing is always a sample. You can never testyéhiag, and you can always find more to
test. Thus you will always need to make decisidmsua what to test and what not to test,
what to test more or what to test less. The gengrall is to find the worst defects first, and to
find as many such defects as possible. A way tarrenthis is to find the most important
functional areas and product properties. Findingnasy defects as possible can be improved
by testing more in the bad areas of the produds fiteans you need to know where to expect
more defects, which will be explained in the nesdtn.

You need to know the most important areas of tloelyet. In this section, a way to prioritise
this is described. The ideas presented here arth@ainly valid ones. In every product, there
may be other factors playing a role, but the fac@iven here have been valuable in many
projects. Important areas can either be functianfunctional groups, or quality attributes
such as performance, reliability, security etctHis paper we will use the generic term risk
items for this.

Major factors to look when determining the impodarmf risk items include:
Critical areas (cost and consequences of failure)
You have to analyse the use of the software witlsimverall environment, analyse the ways

the software may fail. Find the possible conseqesraf such failure modes, or at least the
worst ones. Take into account redundancy, backdaifities and possible manual checks of

© 2018 Improve Quality Services BV 7

output by users, operators or analysts. A prodoat is directly coupled to a process it
controls is more critical than a product whose atiip manually reviewed before use. If a
product controls a process, this process itselfilshioe analysed.

A possible hierarchy is the following:

- A failure would be catastrophic
The problem would cause the system to stop, mayba &ake down things in the
environment (stop the entire workflow or businesproduct). Such failures may deal
with large financial losses or even damage to hulifan

- Afailure would be damaging
The program may not stop, but data may be losboupted, or functionality may be
lost until the program or computer is restarted.

- Afailure would be hindering
The user is forced to work around, to execute nddffecult actions for reaching the
same results.

- A failure would be annoying
The problem does not affect functionality, but eatmakes the product less appealing
to the user or customer.

Of course damage will mean very different thingpetaling on the product, for some
products it is related to (human) safety and fonsdonly’ to financial damage. Another way
of looking at user importance is to take the vidwnarketing. What are the (unique) selling
points of this new product for our customers?

Visible areas

The visible areas are areas where many users ypkreence a failure, if something goes
wrong. Users do not only include the operatoringjtat a terminal, but also final users looking
at reports, invoices, or the like, or being depemdm the service delivered by the product
which includes the software. A factor to take irocount under this heading is also the
tolerance of the users to such problems. It releddbe importance of different functions or
quality attributes, see abov&oftware intended for untrained or naive users.e@sfly
software intended for use by the general publiedsecareful attention to the user interface.
Robustness will also be a major concern. Softwanechvdirectly interacts with hardware,
industrial processes, networks etc. will be vulbkrdo external effects like hardware failure,
noisy data, timing problems etc. These kinds ofipots need thorough validation, verification
and re-testing in case of environment changes. idegavisibility often a distinction is made
between external visibility (outside the organisasl boundaries) and internal visibility
whereby ‘only’ our own users experience the problem

Most used areas

Some functions may be used every day, other fumetimly a few times. Some functions may
be used by many, some by only a few users. Givarifyrito the functions used often and
heavily. The number of transactions per day magrbelea in helping to find priorities.

A way to set priorities is to skip the testing ah€tional areas, which will only be used once
per quarter, half-year or year. Such functionalitgy be tested after the release, before its
first use. Sometimes this analysis is not so olsidw process control systems, for example,
certain functionality may be invisible to the odtsi It may be helpful to analyse the design of
the complete system.

© 2018 Improve Quality Services BV 8

A possible hierarchy is outlined here:

- Unavoidable
An area of the product that most users will comeantact with during an average
usage session (e.g. start-ups, printing, saving).

- Frequent
An area of the product that most users will comecamtact with eventually, but
maybe not during every session.

- Occasional
An area of the product that an average user magrnesit, but that deals with
functions a more professional or experienced udénaed occasionally.

- Rare
An area of the product which most users never wiglit and which is visited only if
users do very uncommon steps of action. Criticduras, however, are still of
interest.

An alternative method for picking important requments is described in (Karlssat al
1997).

6. The worst areas of the product

The worst areas are the ones having most defelststakk is to predict where most defects

are located. This is done by analysing probabledejenerators. In this section, some of the
most important defect generators and symptoms déeatl prone areas are presented. There
exist many more, and often local factors must loéugred in addition to the ones mentioned

here. This applies to the factors for identifyifg tmost important parts and for the factors

identifying the worst areas.

Complex areas

Complexity is maybe the most important defect gatoer More than 200 different complexity
measures exist, and research into the relationdstveomplexity and defect frequency has
been going on for more than 20 years. However,redigtive measures have until now been
generally validated. Still, most complexity measunmgay indicate problematic areas. Examples
include number of variables used, complex logic aachplex control structure. This means
one may do several complexity analyses, based féerafit aspects of complexity and find
different areas of the product that might have [emis.

Changed areas

Change is an important defect generator (Khoshgoétaal, 1998). One reason is that changes
are subjectively understood as easy, and thusnatysed thoroughly for their impact. Another
reason is that changes are done under time preasdranalysis is not completely done. The
results are side effects. In general, there shexikt a logging of changes done. This is part of
the configuration management system (if somethkegthat exists). You may sort the changes
by functional area or otherwise and find the arehgch have had exceptional amount of
changes. These may either have been badly desfgmedthe start, or have become badly
designed after the original design has been desdrby the many changes. Many changes are
also a symptom of badly done analysis. Thus, hgakibnged areas may not correspond to
user expectations.

© 2018 Improve Quality Services BV 9

New technology and methods

Programmers using new tools, methods and technaaggrience a learning curve. In the
beginning, they may generate many more faults thter. Tools include CASE (Computer
Aided Software Engineering) tools, which may be newhe company, or new in the market
and unstable. Another issue is the programming uagg, which may be new to the
programmers. Any new tool or technique may givelte.

Another factor to consider is the maturity of meth@nd models. Maturity means the strength
of the theoretical basis or the empirical evideritesoftware uses established methods, like
finite state machines, grammars, relational datdeisp and the problem to be solved may be
expressed suitably by such models, the softwarebeagxpected to be quite reliable. On the
other hand, if methods or models of a new and wgrdkind, or near the state of the art are
used, the software may be more unreliable.

Most software cost models include factors accommogiahe experience of programmers
with the methods, tools and technology. This isnggortant in test planning, as it is in cost
estimation.

People involved

The idea here is the thousand monkey’s syndrorhe. more people that are involved in a
task, the larger is the overhead for communicadiod the greater the chance that things will
go wrong. A small group of highly skilled staff msuch more productive than a large group
with average qualifications. In the COCOMO (Boetfi81) software cost model, this is the
largest factor after software size. Much of its aapcan be explained from effort going into
detecting and fixing defects. Areas where relagivebny and less qualified people have been
employed may be identified for better testing.sltimportant in this context to define what
qualified means, e.g. is it related to the programgmlanguage, domain knowledge,
development process, working experience in genetal,

Care should be taken in that analysis: Some corapgdirgensen, 1984) employ their best
people in more complex areas, and less qualifiexplpein easy areas. Then, defect density
may not reflect the number of people or their dication. A typical case is the program
developed by lots of hired-in consultants withdwarbugh follow-up. They may work in very
different ways.

Time pressure

Time pressure leads to people making short cutsplPeconcentrate on getting the problem
solved, and they often try to skip quality contmitivities, thinking optimistically that
everything will go fine. Only in mature organizat®this optimism is controlled.

Time pressure may also lead to overtime work. livedl known, however, that people loose
concentration after prolonged periods of work. Tthge with short cuts in applying reviews

and inspections, this may lead to extreme leveldedéct density. Data about time pressure
during development can best be found by studyime fiists, or by interviewing management
or programmers.

© 2018 Improve Quality Services BV 10

Figure 2: Under pressure things only get worse

Optimisation

The COCOMO cost model mentions shortage of macdiine and memory as one of its cost
drivers. The problem is that optimisation needsagesign effort, or that it may be done by
using less robust design methods. Additional degfjart may take resources away from
defect removal activities, and less robust desigthods may generate more defects.

Defect history

Defect repair leads to changes, which lead to nefeatls, and therefore defect prone areas
tend to persist. Experience shows that defect paveas in a delivered system can be traced
back to defect prone areas in reviews and unit @rabystem testing. Evidence in studies
(Khoshgoftaaet al, 1998) and (Levendel, 1991) shows that moduleshiha faults in the past
are likely to have faults in the future. If defstatistics from design and code reviews, and unit
and subsystem testing exist, then priorities cachimsen for later test phases.

Geographical spread

If people working together on a project have a aertdistance between each other,
communication will be worse. This is true even ofoeal level. Here are some ideas that
haven proven to be valuable in assessing if gebgrapay have a detrimental effect on a
project:

- people having their offices in different floors dhe same building will not
communicate as much as people on the same floor.

- people sitting more than 25 meters apart may noineenicate enough.

- a common area in the workspace, such as a comninterpor coffee machine
improves communication.

- people sitting in different buildings do not comnuate as much as people in the
same building; people sitting in different labs eoumicate less than people in the
same lab do.

- people from different countries may have commurocatifficulties, both culturally
and with the language.

- if people reside in different time zones, commutacawill be more difficult.

In principle, geographical spread is not dangerdime danger arises if people with a large
distancenave tocommunicate, for example, if they work on a comrpart of the system. You
have to check areas where the software structupgires the need for good communication
between people, but where these people have gdogagainst them.

Other factors that can be considered include:

- new development vs. re-usereas that are totally newly developed (from tetygare
likely to contain more defects than those that(kmgely) re-used.

© 2018 Improve Quality Services BV 11

- interfacing: practice has shown that many defects are relatddterfaces between
components, often due to communication problemsngments with more interfaces
are therefore often more defect-prone. A distinctio this context is often made
between internal and external interfaces.

- size sometime people loose overview if componentstgetlarge. Therefore (too)
large components may be more defect prone thamgeeized components.

What to do if you do not know anything about thejgct, also the defect generators cannot
yet be identified? In that case, start with runnamgexploratory test. A first rough test should
find defect prone areas, in the next test you ban toncentrate on these areas. The first test
should cover the whole system, but be very shallbwhould only cover typical business
scenarios and a few important failure situationg, dover the entire system. You can then
determine in which areas the most problems werealed, and give priority to these areas in
the next round of testing. The next round will trddeep and through testing of prioritised
areas. This two-phase approach can always be dpplieaddition to the planning and
prioritising done before testing.

7. The PRISMA process

In this section the process is described that ediollowed when performing a product risk
assessment using the PRISMA method.

Planning

I
Kick-off

I

A 4

Individual
preparation

v

Gather
individual scores

v

Consensus
meeting

v

Define test
approach

Pl

Figure 3: PRISMA process overview

The central theme is the PRISMA process is thetioreaf the so-called product risk matrix.
Using the factors, as explained in the previousiaes, for each item to be tested (risk item)
the impact of defects and the likelihood of defestdetermined. By assigning numeric values
to both, a risk item can be positioned in the pobdisk matrix. The standard risk matrix is
divided in four areas (quadrants I, II, lll and J\@ach representing a different risk level and
type. A different risk level / type should leadadlifferent test approach documented in a test
plan.

© 2018 Improve Quality Services BV 12

I AV

Technical Risks>»
(likelihood of defects)

Business Risk®»
(impact of defects)

Figure 4: Product risk matrix

To support the PRISMA process a supporting softvwaoé has been developed by Philips
TASS in cooperation with Improve Quality Servic€tput examples of this tool are used
throughout the remainder of this paper (e.g. figure6 and 8).

7.1 Planning

Gathering input documents

As always a structured planning phase is the kesutttess. During the planning the input
documents (often the same as the test basis) &eerdeed and collected. Of course the
relevant input documents depend largely on the I@stl on which the risk analysis is
performed. One needs to check that the input dontsrage at the required quality level and
that they contain the items (referred to as riskng) that can be used in this process. The
inputs don’t have to be ‘final’ or ‘accepted’, bsufficiently stable to use them for product
risk analysis. Gaps (e.g. in requirements) shoelddentified and reported to the document
owner. If the input documents are not availablthatcorrect level, one needs to consider how
and if to continue with the product risk analysisgess. Ideally the documents to be used are
a requirements document (for testing at systeml)leme an architectural document (for
development testing).

Identifying risk items

The items that are used for the risk assessmentanéfied based on the input documents:
the risk items. If assumptions are made (e.g.edl&b ambiguousness in input documents),
these should be documented. The most likely saeican be determined by interviewing the
document owner and/or stakeholders. As a rule oimth there should not be more than
approximately 30 — 35 risk items to keep the precgerkable. This often means the items
(e.g. requirements) as stated in the input documeed to be grouped into logical units. The
identified risk items will be structured following hierarchy. It is most often not useful to
consider each and every elementary requiremensaparate risk item. Depending on the test
strategy, the project may decide to do a separaies detailed, product risk analysis to assess
these elementary requirements per component oysi¢ins at a later stage using the higher
level risk analysis result as an input.

The identified risk item list should be uniquelyerdified and understandable to the
participants. The reference identification camabeumber, but it may also contain a code or

© 2018 Improve Quality Services BV 13

abbreviation that is meaningful in the project. sk item, if possible, a link should be
provided to the relevant parts of the input docuiaigon. A description of the risk item can
be added as a one-liner. For the participants,déscription should give a clear idea which
risk item they have to assess.

Determine impact and likelihood factors

For product risk analysis two ingredients are ratgvthe likelihood that a failure occurs and
the impact if this happens. In sections 5 and 6d¢he/o ingredients are discussed and several
factors that influence the impact and/or likelihottéht are recommended to be used are
presented. The test manager determines the fabtirshe project will use to assess the risk
items in terms of likelihood and impact. Ideally iartial list of factors is already determined
at organisational level, e.g. in the test stratddne project may of course have good reasons
to deviate from the standard set of risk factors.

In addition one will have to select a value setdach factor. Preferably these values are not
presented as numbers, but with meaningful desongtie.g. ‘less than 5 interfaces’, ‘more
than 10 interfaces’ etc. If possible, the valuesutth have an objective and measurable
meaning (e.g. ‘< 1 KLOC’ instead of ‘medium sizeHlowever, in practice most often
numeric value sets are used such as 1 to 3, btd51, 3, 5, 9. The first one is probably the
easiest one to use and related to the low (1), med2) and high (3) concept. Purely from a
testing perspective the last one is preferred sinoere clearly identifies the high risks, since
the 9 is highly distinguishing compared to the otredues within the set. Preferably the value
set with interpretations for each factor shoul@adty have been determined at a higher level
than at project level.

Define a weight for each factor

It is also possible to use weights whereby oneofastconsidered more important than another
factor, e.g. one factor could have 2 times the thoof another factor. Again weights for the
factors are preferably determined in the test egngtbut can be tailored for project specific
purposes. The general method is to assign weightsto calculate a weighted sum for every
area of the system. Focus your testing on the avhage the result is highest! For every factor
chosen, assign a relative weight. You can do thisery elaborate ways, but this will take a lot
of time. Most often, three weights will suffice. Mas may be 1, 2, and 3. (1 for “factor is not
very important”, 2 for “factor has normal influeric8 for “factor has strong influence”). Once
having gathered historical project data one cam Sitee tuning the weights.

Select stakeholders

The stakeholders that will be involved in the pratdusk analysis are identified and selected.
Typically different roles from the business andnfravithin the project will be selected.
Examples are project manager, developers, softaatdtect, marketing, end user, business
manager and application engineer. This is an inaporactivity, which is explained by the
statement “a stakeholders forgotten means relatks are not identified”.

Theoretically every stakeholder could be askedsgiga values to every factor. In practice it
is much more useful to assign only those factoed #re relevant to the stakeholder, i.e.
related to his role. Typically the factors for ingpashould be assigned to business
representatives and factors for likelihood to tecéinexperts, e.g. the software architect,
senior engineer. For obvious psychological reasbaesnethod prescribes not to use weight
factors for stakeholder, i.e. each stakeholdepoisidered equally important. It is also highly
recommended to assign each factor to at leasttakelsolders.

© 2018 Improve Quality Services BV 14

The test manager who is responsible for assigmagdles has to make a good balance in:
- choosing the appropriate persons for the rolesraipg on the test level
- choosing “technical” roles to fill in the likelihdoand “business” roles to fill in impact
- involving sufficient knowledge areas, both for immpand likelihood parts

Scoring rules

Finally the rules are set that apply to the scopngcess. One of the common pitfalls of the
risk analysis is that the results tend to cluster,the result is a two-dimensional matrix with
all risk items close to each other. To prevent thian efficient way, the stakeholders should
be enforced to score the factors on a full rangthefvalues. Rules will support this process.
Examples are ‘the full range of values must be ‘usalll factors shall be scored, no blanks
allowed’ and ‘homogeneous distribution of valuesigised to a factor’.

7.2 Kick-off

Optionally, a kick-off meeting can be organizedwhich the test manager explains to all
stakeholders their role in the process. Althoughiooglly, the kick-off meeting is highly
recommended. After the kick-off meeting the procasd expected actions should be clear to
all participants. The kick-off meeting can alsoused to explain the list of risk items, factors
and to make clear to which factors they have t@assvalue.

The kick-off phase of the risk analysis is to eestlmat not only the process, the concept risk
based testing and the risk matrix, but also theqae of the activities are clear. A clear
explanation and common view will contribute to attée deployment and motivation.

Discussion about the usefulness of the procesegpected benefits should take place here,
not later during the process. Items to discuss heeee.g. how to perform the individual

preparation, explanation of the tools to be usew the applicable deadlines. The test
manager also provides an overview of the remaiofithve process. It should be made clear to
the stakeholders what to expect at the consensasngerganized at a later stage and what
will happen at the end of the process. The testag@nexplains to the stakeholders what their
role in this process is and how their contribuiiimifuences the test approach for the project.

The risk items and factors are explained in detslthe stakeholders will be requested to
score them. The exact meaning of the risk itenesfdhtors, the value set(s) and assumptions
must be made very clear to them. To obtain relialelults there must be a common
understanding of all properties of the risk assesgm

At the end of the kick-off meeting, commitment frahe stakeholders is needed, to ensure
they will participate in a meaningful manner.

7.3 Individual Preparation

During the individual preparation values are assigmo the factors per risk item by the
participants. The participants score by selectihg (lescription of) the value that fits best the
perceived risk for the corresponding factor regagda risk item. This step can be done
manually, but is often supported by providing thatigipants with Excel sheets that even
support automatic checking against the scoringsrule

© 2018 Improve Quality Services BV 15

Microsoft Excel - James Knight

{5 Bestand Bewerken Beeld Invoegen Opmask Extra Data Venster Help Typ een vrasg vo
ARNEN WESE TS NN NP W S AN RS NS A W AL I LN _§
C15 - B
A | B | c | Stakeholder individually fill in scores
1] : | : per Risk items/ Factors.
=20 Project: MNew Project .
[S3] Name: James Knight
| 4 |
5 |
| 6 Complexity experience of the programmers frequency of use critical business process
| 7 | Screen 1 2 2 1
| 8 | Equalizer 3 3 2 2
9] Surround mode | 4 3 4 2
110 | Audio control centre 5 5 4 5
|11 Distribution | oK | NOT OK | NOTOK | NOT OK |
(12
| 13 | Assumptions
| 14 Screen It is not clear which Programmer is going to build the screen settings
S Equalizer . .
ER Sﬂ,mu"d e T Add an assumption when applicable.
EiE Audio control centre |
PR v, Stakeholder / | € |
Gereed H

Figure 5: Example of participants’ score sheet (fr®RISMA tool)

The values filled in by the stakeholder are basegerceived risks: the stakeholder expects
that something could go wrong (likelihood of defair is important for the business (impact
of defects). Perceived risks are often based osopat assumptions of the stakeholder. These
assumptions also have to be documented. Lateneicdnsensus meeting, these assumptions
are highly useful to compare the scores, explagxpacted results and outliers, e.g. ‘Why did
we score this way?’, ‘Did we make different assuoms?’.

The values are checked against the rules that prereletermined by the test manager. For
example: are the selected values sufficiently ithgted, and are all assigned factors to the
stakeholder scored upon completion. It is impdrtanget an (as much as possible) even
distribution between the various possible valuegmwhlcoring for a certain factor. This is

essential for a useful product risk analysis. Asisig values is not about absolute values but
about relative values, e.g. which is the most cemjlem, what item is most often used. By
using both high and low values during the scoriracess, clearer testing priorities can be set
at a later stage thanks to a more differentiated sg.

Example of scoring:

Good Practice Bad Practice
Risk item Complexity Risk item Complexity
001 Low 001 High
002 High 002 High
003 Medium 003 Medium
004 Low 004 High

Table 1: Examples of good and bad scoring practices

During this phase, the test manager has a supgauie to the (first time) participants, e.qg.
re-explaining in detail the process, the rules poskibly the factors.

© 2018 Improve Quality Services BV 16

7.4 Gather individual scores

Entry check

During the gathering of individual scores the testnager first checks whether scoring has
been done correctly. If there are still violatidnsthe rules, the test manager should discuss
this with the participant. Maybe the meaning ohatdr or value should be clarified or some
additional assumptions have to be made and doceaherfhe test manager should also check
if the participant documented his assumptions.eiéded, the applicable participant has to
(partly) repeat the individual preparation. A cheukeds to be done by the test manager
whether at least two scores for each factor haemn lveceived. If a rule violation can’'t be
resolved by stakeholder and test manager, e.g. Wisnagree that ‘even distribution’ is not
applicable for a certain factor, this should bedssed in the consensus meeting.

When the deadline is approaching, the test marsgmrid remind the stakeholders to submit
their score and return them in time. Stakeholdeas didn’t return their scores on time shall
be approached individually. Before the next phdsteprocess is entered, there should be at
least a representative response from each grosiakdholders or roles in the project.

Processing individual scores

The test manager now processes and analyses ileluad scores by calculating the average
value. He also prepares a list of issues to beugssx in the consensus meeting. For each risk
item the likelihood and impact is determined. Pisk ritem the scores of the factors
determining likelihood are added up and separdbedyscores of the impact factors are added
up. Each risk item can now be positioned in theated risk matrix.

Candidates for the issue list to be discussed énctinsensus meeting are all outstanding
violations of rules:
- when because test manager together with stakehloéer decided to escalate a rule
violation
- when the total result of all assessment forms &éad to unresolved risk items. A risk
item is qualified as unresolved when the distributof all assigned values for a factor
exceeds a pre-determined threshold, e.g. a staderhaksign the highest value and
another stakeholder assigns the lowest value ®rstme factor regarding a certain
risk item.
- also risk items that are positioned too close déntre of the risk-matrix where all
guadrants come together should also be discusspdwithin the circle of the risk
matrix example in figure 6.

The threshold value and the other rules are detexnin the project rule set by the test
manager during the planning phase.

© 2018 Improve Quality Services BV 17

7.5 Consensus meeting

The consensus meeting starts by the test managkirgrg the objectives of the meeting. At
the end of this meeting a common understanding Idhlbe achieved on the (perceived)
product risks. The final result should be a risktnmacommitted by the stakeholders and
adhering to the rule set. A consensus on all sasrest necessarily needed and sometimes
even impossible. After all each participant has asn interest and views regarding the
importance of specific risk item depending on haskground and role.

Product Risk Matrix

2
2
2

=

o

=

-

Figure 6: Example of a risk matrix (from the PRISkaAl)

During the meeting the items from the issue list discussed between stakeholders and test
manager with the purpose to reach consensus aretstadding each others arguments. The
discussion takes place per risk item per factongu¢he documented assumptions. Often
different understanding of the requirements is@@® of different scoring. This should lead
to a change request on the requirements since #énesben obviously not unambiguous.

At the end of the discussion final scores are dateed and the resulting risk matrix is
presented (see figure 6). This resulting matrix usthoalways be validated with the
stakeholders: “Is the matrix as expected or areethay surprising results?”. If results are not
according to the expectations of the stakeholdeey should be (re-)discussed. Common
sense should always be a part of any method; glsenmethod too strictly can be dangerous.

At the end of the meeting, the test manager sunzegthe results and checks if the intended
objectives are met. If needed, a follow-up meetiogld be organised, or a specific discussion
meeting in a smaller group, e.g. when the requirgsnéeam has dealt with questions that
were raised.

Larger projects: more risk matrices
Within one project several risk matrices can batg@. Examples include:
- amatrix for an acceptance test and a risk matfarethe supplier tests
- a matrix for at master test plan level and a matigpecific test phases.

© 2018 Improve Quality Services BV 18

Whenever several risk matrices are created, theyldhbe consistent. It is often possible to
re-use parts of a matrix from a higher-level tdahgdor a lower-level test plan. For example,
when selecting stakeholders for a risk matrix féowser-level test plan, it can be decided not
to select any stakeholders to assess the busiisi&ss(impact factors). Instead the business
risks are copied from the higher-level test plann§istent means that risk items, which are
present in more than one matrix, have comparaldeescWhen a risk item in the risk matrix
from the higher-level test plan is split up intovesal items in a lower-level risk matrix, the
average risk score of these items must to be cabf@to the score of the risk item in the
higher level product risk matrix.

7.6 Define a differentiated test approach

Based on the risk items’ location in the risk matall risk items are prioritized. The result is
ordering of all risk items, the most important iteirst. In addition to prioritization a
differentiated test approach for the risk itemsdse® be defined based on their position in
the risk matrix. The test approach usually has tvagor aspects: the test depth used, and the
priorities for testing. Test depth can be varieduing different test design techniques, e.g.
using the decision table technique on high-risk items and using ‘only’ equivalence
partitioning for low risk risk items. The problemittv varying test depth based on the
application of test design techniques is that ioftest) projects are mature enough to use a
set of test design techniques. Many test projdtjustt write test cases based on requirements
and do not practice test design.

In addition to using different test design techmisjuthere are alternatives to define a

differentiated approach based on the resulting mskrix. Practices to consider that can be

applied for defining a differentiated approach uu# static testing, review of test designs, re-

testing, regression testing, level of independemzkexit criteria such as a statement coverage
target. Also high-risk items can be tested by tlustexperienced engineers, another way to
mitigate the risk.

Let’s consider the testing practices mentioned mordetail and how they can be used to
define a differentiated test approach:

- Static testing
Based on the identified risks one can choose tondce review, e.g. inspection, on
those areas that are considered high risk.

- Reviewing of test designs
For high-risk areas the test designs (or test ¢asesbe reviewed with stakeholders or
other testers.

- Re-testing
With re-testing, also called confirmation testinge can decide to re-run the full test
procedure or just the step that failed and rettestlefect solved in isolation.

- Regression testing
Of course the outcome of the risk assessment cam diive the regression test,
whereby high-risk areas should be most intensigelyered in the regression test set.

- Level of independence
It is possible to have one tester define the tases and test procedures, and another
tester execute the test procedure. The independshtexecutor tends to be more
critical towards the test cases and the way theyegecuted and as a result will likely
find more defects. Also for component testing om@ enake pairs whereby two
programmers each test each others’ software.

© 2018 Improve Quality Services BV 19

- Exit criteria
Different exit criteria, also called completionteria, can be used for different risk
levels. Requirements coverage or code coverageriarishould be more strict for
higher risk areas. Other exit criteria that cardusedifferentiate include percentage of
test cases executed, number of outstanding defadtdefect detection rate.

Note that the outcome of the product risk assessmem also influence the development
process. Choices made in the development procdksften have an effect on the residual
product risks, especially on the likelihood of dae

Of course initially, the content of the risk matisxbased on the perceived risks at an early
stage of the project. During the project the teahager has to maintain the matrix, based on
lessons learned e.g. defects found or other mehsadécators like DDP (Defect Detection
Percentage), (changed) assumptions, updated rewnts or architecture. Changes in the
project's scope, context or requirements will oftequire updates of steps in the risk
assessment process. The risk assessment proaegerdhbecomes iterative.

8. Practical experiences with PRISMA

It unfortunately has not been not possible to perfa controlled comparison between test
projects using PRISMA and other test projects,egitlising another method for risk based
testing or not applying risk based testing at @Herefore, to determine whether PRISMA
offers benefits for the testing, a questionnairgdgtwas performed within approximately
twenty companies that already had applied PRISMAeveral of their test projects.

The main goal of the study was the investigatioretivar the test managers (and testers)
consider PRISMA beneficial for their task of detegtdefects. The rationale behind this goal
Is that test managers tend to use or not use aochettcording to the extent to which they
believe it will help them perform their job bettérhis determinant is referred to as the
perceived usefulnesd the PRISMA method. However, even if a test ngg@ndelieve that a
given technique is useful, they may, at the same,tbelieve that it is too difficult to use and
that the performance benefits are outweighed by efiert of using a more systematic
approach. Hence, in addition to usefulngsstceived ease-of-usis a second important
determinant to take into account.

To define these concepts in more detail, the falgvdefinitions are introduced:

- Perceived usefulness is “the degree to which aopebglieves that using a particular
method or technique would enhance his or her jofopaance.” This follows from the
definition of the word useful: “capable of beingedsadvantageously.” Hence, a
method high in perceived usefulness is one for wisidest manager believes in the
existence of a positive use-performance relatignshi

- Perceived ease of use, refers to “the degree tahwdiperson believes that using a
particular system would be free of effort.” Thidléovs from the definition of “ease”:
“freedom from difficulty or great effort”. A techque, method, or tool that is easy to
use is more likely to be accepted by users.

To measure the concepts udefulnessandease-of-useno objective measures are available.

Hence, subjective measures are employed on afsgalel (strongly disagree) to 10 (strongly
agree. One may also use the téimear compositd¢o designate such a scale. A concept (i.e.,

© 2018 Improve Quality Services BV 20

usefulnesr ease-of-useis often characterised by a set of items. Usefsgnhas therefore
been broken into two aspects: efficiency and effeoess. For each of these items a
statement is presented to the participants. Thécpents are asked to respond to each
statement in terms of their own degree of agreeredisagreement. A score is assigned to
each response. Table 1 presents the items thatcaesedered for the survey.

Usefulness

Ul To what extent is PRISMAsefulfor performing the test management task?
U2 To what extent does using PRISMA make thepgestess morefficien®

U3 To what extent does using PRISMA make the textgss moreffective®
Ease-of-Use

El | Howeasyis it to apply PRISMA in a real-life project?

Table 2: Survey items for usefulness and easeef-us
8.1 Results for the Usefulness of PRISMA

Table 3 exhibits the results of the usefulnessesurConsidering that the score rating is 10,
we can conclude that most of our subjects tendotwsider the PBR approach useful. The
results of the usefulness determination revealRPRIEMA provides the expected benefits for
test project. The test managers’ perception onvidr@ous items indicates that PRISMA
increases the effectiveness and efficiency of tefead detection tasks. This confirms the
assumption that PRISMA exhibits a positive usegrenince relationship.

Usefulness Average score
Ul Usefulness 7.5
U2 Efficiency 7.2
u3 Effectiveness 7.0

Table 3: Results for the Usefulness of PRISMA

Interesting comments made by the participants digauithe usefulness of PRISMA include:

- it supports making the right decisions when thggatas under pressure;

- risk is a business language and therefore PRISM&Ageod tool to communicate with
stakeholders;

- agood basis for test estimation and defining eihtiated test approach;

- it provides a framework for test monitoring and wohduring the project

- aclear focus for the testing activities, alsoadyeduring development testing;

- it ensures that the most important parts of thelpcbare tested before release;

- as aresult of the risk assessment, the priontgi lef the defects found has increased;

- a basis for learning and raising awareness abotdri&athat influence the risk, also to
be used during process improvement.

8.2 Results for the Ease-of-Use of PRISMA

Table 4 exhibits the results of the usefulnessesurit is clear that the score of ease-of-use is
lower than with usefulness. In practice we haventbthat consultancy training, workshop
etc. are needed to get projects stated. Only hawnfgstantially invested in the
implementation test managers find the method easyse. Also the ease-of-use seems to
depend on the test maturity level and test awaseimeshe organisation (see also specific
comments hereafter). Both statements can alsofbeeddrom the scores, whereby the ease-

© 2018 Improve Quality Services BV 21

of-use score had a large standard deviation. Testagers with much experience with
PRISMA tend to score much higher, e.g. 7 and ab®&ased on these findings, we can
conclude that test manager tend to consider PRISIgy to use provided that they have
received the necessary initial practical suppodnés, there is a large probability that test
managers adopt the PRISMA method in their test gemant practices. Also beware that
within the organisation for stakeholders implemegtPRISMA is a real change process. The
process is simple but not easy.

Ease-of-Use Average score
El | Ease-of-use 6.4

Table 4: Results for the Ease-of-Use of PRISMA

Interesting comments made by the participants digaithe ease-of-use of PRISMA include:

- defining the more or less independent risk itenthatcorrect level and grouping them
into approximately 30 items is often a challenge;

- it is sometimes difficult to identify the (busingsstakeholders and to get them
involved, especially the first time;

- for some stakeholders it involves a change of thmdird set, they now more explicitly
become the risk owners;

- making explicit choices is difficult to some (busss) stakeholders, they always
thought everything was tested ‘fully’;

- the interpretation of factors is not easy, a kitkamd good definition of the factors
(including scoring rules) are highly recommended;

- development is not always in line with testing pties, the most important risk items
are delivered relatively late in the process;

- defining a differentiated approach based in thiesris difficult, it also depends on the
knowledge and skill level of the test engineerlved;

- finally most of the risk assessment is built up@ncpgived risk early in the project, as
projects tend to be dynamic and people learn througthe project the risk assessment
also should be treated this way and (partly) regmkatt several instances, e.g. at
milestones.

Finally, one company released defect numbers rgcaftér measuring DDP for several years
at alpha level. In addition to a shorter test ekeaulead time their DDP has improved by
approximately 10% after the introduction of PRISM¥A2003, as can be observed by looking
at the graph hereatfter.

751

70+

65+
601
551

50
2001 2002 2003 2004 2005

O DDP alpha test

Figure 7: DDP number Alpha test level

© 2018 Improve Quality Services BV 22

Acknowledgements

| would especially like to thank Ruud Cox, Stepleaman Dijk, Paul Gerard, Rob Hendriks,
Jurian van de Laar and Hans Schaefer for theiribarion to this paper. | would also like to
thank the many companies that have applied eadieions of PRISMA in their test projects
and provided us with valuable feedback making te¢hod what it is today.

References

Bach, J. (1997), Good Enough Quality: Beyond thezBword, in:I[EEE ComputerAugust 1997, pp.
96-98

Bach, J. (1998), A framework for good enough tegtin: IEEE Computer Magazin@®ctober 1998
Boehm, B.W. (1979)Software engineering economi&gentice-Hall, Englewood Cliffs, NJ

Jargensen, M. (1994Empirical studies of software maintenan@esis for the Dr. Sceintific degree,
Research Report 188, University of Oslo

Gerard, P., and N. ThompsoRjsk-Based E-Business Testifgtech House Publishers, ISBN 1-
58053-314-0

Karlsson, J. and K. Ryan (1997), A Cost-Value Apgto for Prioritizing Requirements, intEEE
Software September 1997

Khoshgoftaar, T.M., E.B. Allan, R. Halstead, G.FioTand R. M. Flass (1998), Using Process History
to Predict Software Quality, inEEE ComputerApril 1998

Levendel, Y. (1991), Improving Quality with a Mameturing Process, iInEEE Software March
1991

Pol, M. R. Teunissen, E. van Veenendaal (208Bftware Testing, A guide to the TMap Approach,
Addison Wesley, ISBN 0-201-745712

Schaefer, H. (2004), Risk Based Testing, in: E. WaenendaalThe Testing Practitioner —"2
edition,UTN Publishing, ISBN 90-72194-65-9

Veenendaal, E. van (2004he Testing Practitioner —"2edition, UTN Publishing, ISBN 90-72194-
65-9

Further Reading

A full book has been written by Erik van Veenendaad published
USSRV ELEEEREY by UTN Publishers. Practical Risk-Based Testinghe PRISMA

PR PR AT approach provides a practical, realistic and effectway to

LG VRPN introduce and maintain a testing approach that gesproduct risk,
provides guidance to the testing effort and suppanh-going

process improvement efforts. Risk identificatioiskranalysis, risk
mitigation and risk monitoring (with a special fecon reporting)
are explored and presented in this book. Also oheiuis a detailed
description of the process that can be followed wperforming a
product risk assessment using the PRISMA method bbok

discusses implementation issues, process variategs for Agile,

relates user experiences and closes with a numberssential
lessons learned while performing PRISMA in read-lirojects.

E. van Veenendaal (2012), Practical Risk-Based ifigssitThe PRISMA Approach, UTN
Publsihers, The Netherlands, ISBN 9-789490-986070.

© 2018 Improve Quality Services BV 23

The Author

Erik van Veenendaal (www.erikvanveenendaal.nl) ideading
international consultant and trainer, and a recaghiexpert in the
area of software testing and requirement engingeritrik van
Veenendaal is the founder of Improve Quality SeasiBV and has
been the company director for over 12 years. Is ttuntext he
developed the risk-based test approach PRISMA. Halso the
author of a number of books and papers within tloéegsion, one
of the core developers of the TMap testing methagipland the
TMMi test improvement model, and currently the CBO the
TMMi Foundation. Erik is a frequent keynote andotidl speaker
at international testing and quality conferences: Ris major contribution to the field of
testing, Erik received the European Testing Exoeke Award (2007) and the ISTQB
International Testing Excellence Award (2015). Yean follow Erik on twitter via
@ErikvVeenendaal.

© 2018 Improve Quality Services BV 24

Annex: Calculation example

In this simplified example three stakeholders anlved in providing input and scoring. A
project manager who will provide a score for alitéas, a business manager who will only
score the impact related factors, and the architdat will only score the likelihood related
factors. For this example the value set 1 to Selu

Results of individual scoring:

For every factor chosen, you assign a number ohtpoio every risk item (product
requirement, function, functional area, or quatiharacteristic). The more important the risk
item is, or the more alarming a defect generatemseto be for the area, the more points.

Project manager Impact of defects Likelihood of defcts

Factor. User Importance Usage intensity Complexity New del@pment
Weight 2.0 1.0 1.0 2.0

Risk item 1 5 3 5 5

Risk item 2 3 5 5 1

Risk item 3 3 2 1 5

Risk item 4 4 1 2 2

Risk item 5 1 2 3 3

Business manager

Impact of defects

Likelihood of flects

Factor:

User Importance

Usage intensity

Complexity

New del@pment

Weight

2.0

1.0

1.0

2.0

Risk item 1

2

Risk item 2

Risk item 3

Risk item 4

Risk item 5

N O lWlb~

Wik |w|uo

Architect

Impact of defects

Likelihood of defects

Factor.

User Importance

Usage intensity

Complexity

New del@pment

Weight

2.0

1.0

2.0

Risk item 1

Risk item 2

Risk item 3

Risk item 4

Risk item 5

H

WL |OIN|O7

© 2018 Improve Quality Services BV

25

Average scores (calculated by the test manager):

Impact of defects Likelihood of defects
Factor. User Importance Usage intensity Complexity New del@pment
Weight 2.0 1.0 1.0 2.0
Risk item 1 4.5 25 4.5 5.0
Risk item 2 3.0 5.0 4.5 15
Risk item 3 3.5 25 1.0 5.0
Risk item 4 4.5 1.0 25 15
Risk item 5 1.5 25 4.0 3.0

Weighted sum:

The average number of points for a factor is nowitiplied by its weight. This gives a
weighted number of points. These weighted numbegstizen summed up for impact and
likelihood. Testing can then be planned by assigjtive greatest number of tests to the areas
with the highest number of points.

Impact of defects Likelihood of defects
Risk item 1 9.0+25=115 45+10.0=14.5
Risk item 2 6.0+50=11.0 45+3.0=75
Risk item 3 7.0+25=95 1.0+10.0=11.0
Risk item 4 9.0+1.0=10.0 25+3.0=55
Risk item 5 3.0+25=55 4.0+6.0=10.0

Resulting risk matrix:

15 71
1387

1267

1147
10271

(4]

Likelihood

H
o
&

o
o
!

»¢l4]

m
.

42 7

3 42 54 BB 78 3 102 11.4 126 138 15
Impact

Figure 8: Resulting product risk matrix (from th&FSMA tool)

© 2018 Improve Quality Services BV 26

The risk matrix suggests that items 1 and 3 ast firiority, although item 3 may need some
discussion since it is close to the center. Frobusiness perspective 2 and 4 are the second
priority level.

A word of caution: This calculation is not theocally 100% correct. Actually you are
multiplying apples with oranges and summing uptfsalad. Thus, the number of points can
only be a rough guideline. It should be good enagtiistinguish the high-risk areas from the
medium and low risk areas. That is its main tagks Blso means you don't need to be more
precise than needed for just this purpose.

© 2018 Improve Quality Services BV 27

