
Building on Success – Beyond the Obvious
A Closer Look at Good Enough Testing

Drs. Erik P.W.M. van Veenendaal∗
TMMi Foundation / Improve IT Services BV

erik@erikvanveenendaal.nl

ABSTRACT
On a regular basis I have in recent years delivered an evolving
keynote presentation under the title “Building on success – Be-
yond the obvious”. During this keynote I try indicate which basic
testing practices are, based on my personal experiences, often key
and sometimes even sufficient to “survive” in real-life projects. Be-
ing honest and looking at day-to-day practice, I often notice that
many structured testing practices, as defined by TMap [1], TMMi
[2] and/or ISTQB [3], are not, or at most partly, applied. I often
encounter a meaningless test plan, test design techniques not being
applied, reviews not being performed and testers not trained and
prepared for their job. And this being is the case more than 30 years
after releasing the best-seller “Testing according to TMap”, and also
more than 20 years after releasing the basic ISTQB Foundations in
Software Testing syllabus!

The contradiction here is that despite not applying the proposed
testing practices most of us are still releasing systems. However,
the release is often (a bit) too late, at much higher costs and often
not fully according the expectations. At the project retrospective,
management typically at first firmly state they are unsatisfied with
the result and the situation, and performance shall be better next
time. In practice, next time nothing has changed and often it is the
same result and situation. I can only conclude that this is apparently
acceptable to the management since they don’t really act (although
they say differently). My personal observation is that there is a
sort of minimum set of testing practice and that there are often in
practice just enough to get the job done in a project. In this paper,
we will explore and present a minimum set of testing practices
starting from the concept of “good enough testing”.

CCS CONCEPTS
• Software verification and validation; • Software testing and
debugging; • Use Cases; • Walkthroughs;

∗Erik van Veenendaal (www.erikvanveenendaal.nl) is a leading international consultant
and trainer from Improve IT Services BV (Bonaire), and a recognized expert in the area
of software testing, quality and requirement engineering. He is the author of a number
of books and papers within the profession, one of the core developers of the TMap
testing methodology and the TMMi test improvement model, and currently the CEO of
the TMMi Foundation. Erik is a frequent keynote and tutorial speaker at international
testing and quality conferences. For his major contribution to the field of testing, Erik
received the European Testing Excellence Award and the ITQB International Testing
Excellence Award.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FAMECSE ’22, June 07, 08, 2022, Cairo-Kampala, Egypt
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9663-9/22/06.
https://doi.org/10.1145/3531056.3542764

KEYWORDS
Good Enough Testing, ISTQB, Reviews, Risk-Based, T-Shaped, Test
Techniques, TMap, TMMi, Unit Testing
ACM Reference Format:
Drs. Erik P.W.M. van Veenendaal. 2022. Building on Success – Beyond
the Obvious: A Closer Look at Good Enough Testing. In Federated Africa
and Middle East Conference on Software Engineering (FAMECSE ’22), June
07, 08, 2022, Cairo-Kampala, Egypt. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3531056.3542764

The statement that there is a sort of minimum set of testing practice
and that there are often in practice just enough to get the job and
also the corresponding keynote presentation have constituted much
discussion, e.g., on social media platforms. A good reason to also
devote a short paper to the topic. Apparently some testers and
quality professionals are under the opinion that I’m disloyal to
TMap, TMMi and ISTQB (nothing could be further of the truth).
From a theoretical and literature perspective fully structured testing
seems to be the optimal and best solution. However, in practice
a professional tester is often capable to select a minimum set of
testing practices from a structured testing approach to get the job
done. This minimum set of testing practices are the ones that are
strictly necessary for a project. We could reference them as the
“good enough” testing practices. Note that this will be different
when testing in a safety critical environment, but of course most of
us are not.
Which ones are the basic or minimum set of test practices that
constitute “good enough” testing? In the remainder of this paper
we will look at some important candidates to consider. Those that
should be used and, based on many personal practical experiences,
have shown to be able to make the difference. It’s almost like a tool
box for agility or to be lean in testing.

Define clear testing prioritiesConsider the testing principle
“Testing is Risk-Based” [4]. Whatever you are testing, whether you
have a test plan or not, whether you following an Agile or sequential
lifecycle, always in any testing there are limited resources, e.g., time
and effort. As a consequence one of the most important things in
testing is therefore to define clear priorities regarding the items
and features being tested. Priorities shall be defined using a risk
assessment process. It is important that every blow is worth a drop!
A risk assessment process typically has three steps: 1) to identify
the risks, 2) to analyse the risks possibly documented in a product
risk matrix (figure 1), and finally 3) define an approach to mitigate
the risks. It could be as simply as an informal team-based risk
session, or a full Failure Modes and Effect Analysis (FMEA) process.
There needs to be a common understanding by all of the risks and
subsequently of the defined testing priorities.
Perform limited effective reviewsConsider the testing principle
“Testing is preventing defects” [4]. Reviews are often not or very

www.erikvanveenendaal.nl
https://doi.org/10.1145/3531056.3542764
https://doi.org/10.1145/3531056.3542764


FAMECSE ’22, June 07, 08, 2022, Cairo-Kampala, Egypt Erik van Veenendaal

Figure 1: Product Risk Matrix

poorly performed in projects. Sometimes they are applied highly
dogmatic on almost all documents without achieving added value.
Make choices (set priorities based on identified risks) and perform
a limited number of reviews on documents that are essential to
the success of the project, e.g., requirements or user stories. But
do make sure that the relative limited number of reviews then
are performed in a professional and thorough way. Apply review
practices that make the difference, e.g., assign roles, use checklists,
not too many pages, apply checking rate, and last but certainly not
least ensure the reviews are led by trained moderators.
Get developers doing unit testingConsider the testing principle
“Testing requires independence” [4]. Many defects can already be
found at unit level. Developers also have a lot of knowledge about
the system being developed. Testing for example boundaries and
syntax at system test level is really ridiculous and almost like a
waste of effort. You can already find these type of defects and do
the corresponding rework much more efficiently at unit level. Im-
plement pair testing from XP to achieve independence even at unit
level. Ensure that a unit testing process is defined and deployed,
preferably supported by code coverage tools. Code coverage pro-
vides an independent measure of the quality of unit testing, but
it is not only a measure it also provides a great support for the
developer doing unit testing getting instant feedback on holes in
his or her unit test suite. Unit testing is a many times more efficient
and effective approach than setting up a large test team at the very
end of the project.
Use test techniques as toolsConsider the testing principle “Testing
finding defects” [5]. Test design techniques are a supporting tool
to find more and often a certain type of defect. They should by no
means be treated as an objective by themselves; finding defects is
the goal! Sometimes more formal techniques, e.g., decision table
testing, are necessary as a consequence of the complexity or the
business risk. However, most often less formal techniques are an
adequate way to get the job done. This is especially true for (test)
teams with much domain knowledge. One can in this context think
of test use cases, classification trees, and of course exploratory
testing. An advantage of applying use cases or classification trees is
that their way of documenting test cases is more easy to understand

Figure 2: The T-shaped Tester

by business analysts. This allows for the business analysts to review
them and provide valuable feedback. Finally, don’t lose yourself
in defining a large of test cases, rather start with a test design
activity to focus testing. During test design the test conditions
(or test situations) that need to be covered are identified. A best
practice is to organize test design start-up meetings with the team
or with stakeholders, discussing and identifying in collaboration
the conditions that need to covered. The output could be something
as simple as mind-map, possible to be used as a starting point for
exploratory testing.

Build experienced and skilled testersConsider the testing prin-
ciple “Testing is an extremely complex and intellectual challenging
task” [5]. Maybe the most important basic test practice, are the
people doing it. To some degree, this paper is especially addressing
“level 1” test maturity organizations, which by the way is still the
large majority, and as such the testing heroes who are needed in
these organizations. Build a great (test) team, almost continuously
invest in building the knowledge and skills of the testers. This can
be done through formal training, but also by means of training-
on-the job and internal sessions where practical experiences are
discussed and shared. Following the T-shaped tester concept (figure
2) do not only consider testing knowledge, but also domain knowl-
edge and IT-based knowledge, e.g., requirements engineering and
scripting, but do not forget the so-called “soft skills”.
Good luck doing “good enough” testing!!

REFERENCES
[1] M. Pol, R. Teunnissen and E. van Veenendaal (2002), Software testing – A Guide to

the TMap Approach, Addison Wesley
[2] E. van Veenendaal and B. Wells (2012), Test Maturity Model integration (TMMi) –

Guidelines for Test Process Improvement, UTN Publishing
[3] D. Graham, R. Black and E. van Veenendaal (2019), Foundations of Software Testing

– ISTQB Certification (4th edition), Cengage
[4] B. Hetzel (1984), The complete guide to software testing, QEB Information Sciences

Inc.
[5] G.J. Myers (1979), The art of Software testing, Wiley-Interscience


	Abstract
	References

