
28 Testing Experience – 21/2013

Testers use requirements as the basis of test cases, review them for 
testability, and often participate in general requirement reviews or 
inspections. Unfortunately, many testers have little knowledge of or 
skill in requirements engineering. What level of quality and detail is 
realistic to expect in requirements documents? What does testability 
really mean? How can testers help improve requirements? Testers should 
be able to answer these questions and more, possessing skills in require-
ments engineering.

We complain about requirements “Can’t test this, not clear, not unam-
biguous” but have no clue and are unable to answer questions in return 
such as “What do you think is a good testable requirement?”.

However:

▪▪ we are one of the main stakeholders, risk analysis, test designs are 
based upon requirements

▪▪ we are involved in requirements reviews, what level of quality is 
reasonable?

▪▪ test designs may even be used as requirements

▪▪ sometimes (in agile) we identify and specify requirements

▪▪ we have a major interest in requirements and are heavily involved!

Agile
The IT-world has changed and most companies practice some kind of 
agile development, at least in part of their projects. In agile the tester 
is even more involved in requirement than ever before and contributes 
to documenting requirements and its acceptance criteria. User story is 
one of the primary development artifact for agile project teams. In agile 
methodologies requirements are prepared in the form of user stories 
which describe small functional units that can be designed, developed, 
tested and demonstrated in a single iteration. These user stories include 
a description of the functionality to be implemented, any non-functional 
criteria, and also include acceptance criteria that must be met for the 
user story to be considered complete. Testers have heavily involved in 
documenting user stories and its acceptance criteria

Broaden your skill set
There are trends in software testing that the (traditional) tester needs 
to be aware of and respond to. Knowledge and skills will be a challenge 
in the very near future for many testers. It is just not good enough any-
more to understand testing and hold an ISTQB certificate. We will not 
anymore work in our safe independent test team. We will work more 

Requirements 
Engineering, 
also for Testers

Erik van Veenendaal



Testing Experience – 21/2013 29

closely together with business representatives and developers helping 
each other when needed and as a team trying to build a quality product. 
It is expected from testers to have domain knowledge, requirements 
engineering skills, development scripting skills, and strong soft skills, 
e.g., on communication and negotiation (figure 1).

Test knowledge

▪▪ test principles
▪▪ techniques
▪▪ tools, etc. 

IT knowledge

▪▪ software development
▪▪ requirements
▪▪ configuration management

Domain knowledge

▪▪ business process
▪▪ user characteristics 

Soft skills

▪▪ communication
▪▪ critical mindset
▪▪ presentation and reporting 

Figure 1. Testing skills and knowledge

Now understanding that as a tester one needs knowledge and skills in 
requirements, there are many options. Some testers take in a course in 
Requirements Engineering based on the IREB certification scheme, other 
course being available as well of course, some practice apprenticing, etc. 
Whatever it takes to get the job done.

Five success factors
Based on many years of experience in Requirements Engineering, I would 
like to point you to five critical success factors that I would recommended 
the tester to start digging into:

1. Requirements attributes

Requirements are much more than “just” the sentence, consider docu-
menting its rationale, priority, requirements type, related use case etc. 
Requirement Attributes are properties of a requirement. They capture 
important additional information about a requirement. Usually the 
requirements attribute evolve into a card (e.g., user story card) being 
used in a project or organization (see figure 2). Don’t go overboard, define 
a practical set of attributes that all have added value.

Requirement #:

Description:

Rationale:

Source:
Fit Criteria:

Priority:
Supporting Material:

Requirement Type:
Event/Use Case:

Figure 2. Example requirements card

2. Requirements acceptance criteria

Acceptance criteria (also called fit criteria) complete the definition of the 
requirement. We have to be able to tell whether a solution completely 
satisfies, or fits, a requirement, they will make requirements measur-
able. It is often much easier to add concrete acceptance criteria than to 

write a 100 % unambiguous requirements. Acceptance criteria in some 
way detail the requirement.

3. Requirements rules

The discussion on “what are good requirements?” is endless. Of course it 
depends on the context but most important is needs decisions. A concrete 
and usable requirements rule set should be defined that leads to “good 
enough” requirements your context. Discuss and define rules on issue 
such as iidentification, annotation, changes, consistency, language, brief, 
unambiguous, rationale, quantify and compound.

4. Requirements templates

Instead of re-inventing the wheel over and over again, use templates 
when defining both functional and non-functional requirements. They 
provide consistency and contribute largely to a higher level of unam-
biguousness. It is even more efficient, so why not tomorrow? For stories 
typically the following format is applied “As a <role>, I want <goal/desire> 
so that <benefit>”. Other common templates include:

The <stakeholder> shall be able to <capability> (e.g., The order clerk shall 
be able to raise an invoice)

The <product> shall be able to <action> <entity> (e.g., The launcher shall 
be able to launch missiles)

The <product> shall <function> <object> every <performance> <unit> 
(e.g., The coffee machine shall produce a hot drink every 10 seconds

5. Requirements reviews

Reviews are by far the most effective and efficient quality assurance 
measure to find defects. However, this is only true is applied well. Bal-
ance practical vs. theory is one that is very true here. Understand the 
difference between a walkthrough and inspection, these are different 
processes, with different stakeholders and different objectives. Start with 
your objectives and define a review process that matches these objective.

I have been running a tutorial called “Requirements Engineering for 
Testers” for a few years now, maybe I will see you there …	 ◼

Erik van Veenendaal (www.erikvanveenendaal.nl) is a leading international 
consultant and trainer, and a widely recognized expert in the area of soft-
ware testing and quality management. He is the founder of Improve Quality 
Services BV (www.improveqs.nl). He holds the EuroSTAR record, winning the 
best tutorial award three times! In 2007 he received the European Testing 
Excellence Award for his contribution to the testing profession over the 
years. He has been working as a test manager and consultant in various 
domains for more than 20 years. He has written numerous papers and a 
number of books, including “Practical Risk-Based Testing: The PRISMA Ap-
proach” and “ISTQB Foundations of Software Testing”. He one of the core 
developers of the TMap testing methodology and a participant in working 
parties of the International Requirements Engineering Board (IREB). Erik is 
also a former part-time senior lecturer at the Eindhoven University of Tech-
nology, vice-president of the International Software Testing Qualifications 
Board (2005–2009) and currently board member of the TMMi Foundation.
You can follow Erik on twitter via @ErikvVeenendaal.

> about the author


