
The Magazine for Professional Testers

December 2010

IS
SN

 18
66

-5
70

5
		

w

w
w

.te
st

in
ge

xp
er

ie
nc

e.
co

m
		

fr

ee
 d

ig
ita

l v
er

si
on

		

pr
in

t v
er

si
on

 8
,0

0
€	

pr
in

te
d

in
 G

er
m

an
y

Open Source Tools

12

© diego cervo - Fotolia.com

TMM ®
FOUNDATION

i

Launch of the TMMi ® Model

Learn how you can become a TMMi ® Assessor

The TMM i ® Foundation invites you to participate at EuroSTAR2010
Wednesday 1s t December at 8.00 a.m. in Room 17

at Bella Center in Copenhagen

Join as a member free of charge,
and read more about the TMMi®
model and the TMMi® Foundation at
www.tmmifoundation.org

Participate in the TMMi® discussion on

www.linkedin.com/groups
and search for the

“TMMi® Discussion Group – Official Site”

Participate at the TMMi® Launch at
EuroSTAR and listen to:

Erik van Veenendaal when he introduces
TMMi® level 4 and 5
Fran O’Hara when he unveils how you can
become a TMMi® accredited assessor

The TMMi® foundation is a non-profit
organization with the main objectives
to define and manage the internatio-
nal TMMi® model standard and place
it in the public domain

55The Magazine for Professional Testerswww.testingexperience.com

Forgotten tools

In this issue we are discussing open-source tools. Preparing for
my column made me almost automatically re-think test tool ty-
pes, their uptake, my experiences over the years, user satisfaction,
benefits achieved etc. Of course, most often we discuss tools that
are by far the most popular, such incident management, test ma-
nagement, configuration management and test execution tools.
In this column I would like to discuss three types of tools that I
have found useful throughout my testing career, but still have a
small uptake and are most often not the tools that come to mind
first when discussing test tools. I do not intend to provide a full
explanation including pro’s and con’s of these tools, the article is
just meant as a reminder to also put them to the front of your
mind. I recommend to also consider these tool types when defi-
ning a tool strategy, and to not just stick with the more common
ones.

Code coverage

Having once been a developer myself, I would have loved to have
had such a tool back then. As many others, I thought of some test
cases (without much clue as to which parts of the code were exe-
cuted and which parts not), but if the test cases ran ok, I conside-
red the software that I had written to be ok as well. I believe this
way of working is still common in many, if not most, development
organizations. My first practical experiences with coverage too-
ling was in a TV project in 1996 using a non-intrusive freeware

tool. Developers loved it, it supported them in finding out what
part of the software had not yet been covered by the tests on a de-
tailed level. I believe most developers are quality-minded like us,
but we need to provide them with the knowledge and supporting
tools to be able to deliver quality. Coverage tools do exactly that.
Of course they can also be used to define strict and measurable
exit criteria for component testing. Beware, if you go too strict
too soon, otherwise resistance will become an issue. Finally, these
tools can also be used for continuous integration when having an
automated test suite that runs overnight. We can very easily track
the quality of the test suite over time by measuring its coverage
(see figure 1.) Nevertheless, recent surveys [PT] show that not even
10% of the development organizations are using a coverage tool.
However, with the strong focus on component testing within Agi-
le development methodologies this should change rapidly.

Static Analysis

Many of the arguments that I mentioned when discussing code
coverage tools also apply to static analysis tooling. Again, if used
in the right way a highly useful tool to support a developer in
producing quality software. However, most organization imple-
ment static analysis tooling at an organizational level. This may
be the preferred situation (according to theory and vendors), but
is not always a feasible one. Organizations then end up in end-
less discussion to get full agreement between developers on style
guides, coding standards etc. And what about applying the new
style guide and coding standards retrospectively to all the legacy

software that is already in place and will be there for at least the
next decade? Not without reason is static analysis in the top 4 for
shelfware tooling [PT]. If implementing it in full on an organizati-
onal level is asking too much, don’t do it!! However, this does not
mean that static analysis tools cannot have added value. Perhaps
we should keep it much more simple, focus on the twenty or so
coding rules we all agree on. Define a minimum set of software
metrics with criteria we all agree on such as cyclomatic complexi-
ty, number of nested levels and comment frequency, and provide
the tool to the developers to start using. I have seen great results
in producing more maintainable and more reliable software by
applying static analysis tools in a just a limited way. Perhaps the
80/20 also applies here. Remember research has taught us that
40% percent of the failures in the field could have been prevented
if static analysis was used. In practice important quality attribu-
tes such maintainability and reliability are often forgotten in Agi-
le projects; a static analysis tool that provides support in checking
for compliance with the most critical coding rules and software
metrics will have added value here as well.

Test design
In many testing courses much attention is given to test design
techniques, including exploratory testing. Of course it is impor-
tant to teach people how to design test cases, to some extent it’s
the heart of testing. However, recently I read a survey stating that
approximately only 50% of the testers explicitly apply test design
techniques and around 25% percent apply more than one tech-
nique. (Food for thought!) In nearly every test design technique
there are steps that would benefit from being, at least partly,
automated. Most large test tool providers seem to have no idea
what test design techniques are and would benefit largely from
an ISTQB Foundation Level course. As a result there is still limited
availability regarding test design tools, hence the low uptake. This
is a paradox since we perceive it as being a very important part of
testing, but tool focus is on test execution, test management and
incident management tooling. However, if you start searching
you will come across all kinds of easy-to-use tools that support
test design techniques. These are not professional tools (there

by Erik van Veenendaal

Coverage tool: A tool that provides objective measures of
what structural elements, e.g. statements, branches, have
been exercised by a test suite. [ISTQB]

Static code analyzer: A tool that carries out static code analy-
sis. The tool checks source code, for certain properties, such as
conformance to coding standards, quality metrics or data flow
anomalies. [ISTQB]

Test design tool: A tool that supports the test design activi-
ty by generating test inputs from a specification that may be
held in a CASE tool repository, e.g. requirements management
tool, from specified test conditions held in the tool itself, or
from code. [ISTQB]

Figure 1: Coverage measurements to guide test improvements

56 The Magazine for Professional Testers www.testingexperience.com

Erik van Veenendaal (www.erikvanveenendaal) nl) is a leading international consultant
and trainer,
and a widely recognized expert in the area of software testing and quality management
with over 20 years of practical testing experiences. He is the founder of
Improve Quality Services BV (www.improveqs.nl). At EuroStar 1999, 2002 and 2005, he
was awarded the best tutorial presentation. In 2007 he received the European Testing
Excellence Award for his contribution to the testing profession over the years. He has
been working as a test manager and consultant in various domains for more than 20
years. He has written numerous papers and a number of books, including “The Testing
Practitioner”, “ISTQB Foundations of Software Testing” and “Testing according to TMap”.
Erik is also a former part-time senior lecturer at the Eindhoven University of Technology,
vice-president of the International Software Testing Qualifications Board (2005–2009)
and currently vice chair of the TMMi Foundation.

are one or two exceptions), but tools developed by someone en-
thusiastic about testing. In The Netherlands we have a tool called
BTWIN which is in fact not more than an advanced Excel sheet,
but does support decision table testing (including collapsed tab-
les) perfectly (figure 2). I’m also using a small tool that supports
me whenever I have a difficult set of (business) rules that requi-
re testing using condition determination coverage; many of the
readers are probably familiar with the freeware CTE XL tool that
supports classification trees (figure 3), etc. None of these are spec-
tacular tools, but they should be in every tester’s workbench as
they make the application of test design techniques easier and
thus eventually will lead to a larger uptake.

Figure 3: Classification Tree Editor screenshot

Individuals over Processes
It was only when writing this column it struck me that I was ma-
king a case for simple easy-to-use tools over full-blown profes-
sional tools. Don’t get me wrong, full-blown professional tools
offer great support but sometimes there are alternatives depen-
ding on the maturity level and domain of the organization, de-
velopment processes in use etc. In fact in my opinion a test tool
strategy can be a combination of both, one doesn’t exclude the
other. Providing engineers (developers/testers) with a personal
tool workbench consisting of easy-to-use and highly supporting
tools allows you to get the best out of people. To some extent I’m
re-stating “Individuals over processes”. Does that sound familiar?

[ISTQB] E. van Veenendaal (ed.) (2010), Standard Glossary of Terms
Used in Software Testing Version 2.1, International Software Tes-
ting Qualifications Board

[PT] E. Van Veenendaal, Tools and the last six years, in: Professio-
nal Tester, November 2010

Figure 2: Decision table tool screenshot

57The Magazine for Professional Testerswww.testingexperience.com

Erik van Veenendaal
Meile Posthuma

Testwoordenboek
Engelse en Nederlandse definities

Goede communicatie binnen een project heeft
een eenduidig begrippenkader als randvoor-
waarde.

Het Testwoordenboek biedt:
-	 een	volledige	lijst	en	definities	van	alle	

testbegrippen in zowel de Engelse als Neder-
landse taal;

- een tabel om snel te kunnen zoeken naar
Nederlandse testbegrippen;

- volledige aansluiting bij de ISTQB en inter-
nationale testterminologie;

- ter voorbereiding op het ISTQB Foundation
en	Advanced	examen	duidelijk	geïdentifi-
ceerde relevante termen;

Prijs:	€	14,90.
Omvang:	148	pagina’s.
ISBN:	9789490986018
Te bestellen
Bij iedere boekhandel of via www.utn.nl

Testen für Entwickler

18.04.11–19.04.11		 Berlin

Während die Ausbildung der Tester in den letzten
Jahren große Fortschritte machte – es gibt mehr
als 13.000 zertifizierte Tester alleine in Deutsch-
land – wird die Rolle des Entwicklers beim Soft-
waretest meist unterschätzt. Dabei ist er beim
Komponententest oftmals die treibende Kraft. Aus
diesem Grunde ist es wichtig, dass auch der Ent-
wickler Grundkenntnisse im Kernbereichen des
Softwaretestens erlangt.

http://training.diazhilterscheid.com

©
 iS

to
ck

ph
ot

o.
co

m
/a

rli
nd

o7
1

