
Drs. Erik P.W.M.
van Veenendaal CISA

Practical Risk-Based Testing
Product Risk Management: The

PRISMA Method

Often the activities prior to test execution are delayed. This means
testing has to be done under severe pressure. It would be unthinkable
to quit the job, to delay delivery or to test badly. The real answer is a
differentiated test approach in order to do the best possible job with
limited resources.

20112011

20112011

Manchester , UK
21 - 24 November 2011

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

1

 Contents

1. Introduction 	 2

2. Product Risk Management	 2

3. Good Enough Testing 	 3

4. The Testing Challenge	 6

5. The Most Important Parts of the Product	 6

6. The Worst Areas of the Product	 8

7. The PRISMA Process	 11

	 7.1 Planning	 12

	 7.2 Kick-off	 14

	 7.3 Individual Preparation	 14

	 7.4 Gather Individual Scores	 16

	 7.5 Consensus Meeting	 17

	 7.6 Define a Differentiated Test Approach	 18

8. Practical Experiences	 19

	 8.1 Results for the Usefulness	 20

	 8.2 Results for the Ease-of-Use	 20

References 	 22

Biography 	 22

PA
G

E

w w w . e u r o s t a r c o n f e r e n c e s . c o m

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

2

PA
G

E

	 1. Introduction
Often the activities prior to test execution
are delayed. This means testing has to
be done under severe pressure. It would
be unthinkable to quit the job, to delay
delivery or to test badly. The real answer is
a differentiated test approach in order to do
the best possible job with limited resources.
Which parts of the systems require most
attention? There is no unique answer, and
decisions about what to test have to be
risk-based. There is a relationship between
the resources used in testing and the cost
of finding defects after testing. There are
possibilities for a stepwise release. The
general approach is to test some important
functions that hopefully can be released,
while delaying others.

At system level, one probably has to test first
what is most important in the application.
This can be determined by looking at visibility
of functions, at frequency of use and at the
possible cost of failure. Secondly, one has
to test where one may find most defects.
This can be determined by identifying
defect prone areas in the product. Project
history gives some indication, and product
measures give more. Using both, one finds
a list of areas to test more and those to
test less. After test execution has started
and one has found some defects, one may
analyse these in order to focus testing even
more and tune the test approach. The idea is
that defects clump together in defect prone
areas, and that defects are a symptom of a
particular trouble the developers had. Thus,
a defect leads to the conclusion that there
are more defects nearby, and that there
are more defects of the same kind. Thus,
during the latter part of test execution, one
should focus on areas where defects have
been found, and one should generate more
tests aimed at the type of defect detected
before.

	 2. Product Risk 		
		 Management
This paper describes a method for identifying
the areas that are most important to test;
the items that have the highest level of risk.
The Product Risk Management (PRISMA)
method has been developed in practice
and is being applied in many projects and
companies in a wide range of industries.
The method supports the test manager in
doing risk-based testing, especially for the
risk identification and analysis in close co-
operation with stakeholders.

The PRISMA method can be used at every
level of testing, e.g. component, integration,
system, and/or acceptance testing. It can be
applied at both organizational and project
level. On an organizational level the method
can be used to address properties that are
common for most projects in the organisation
or for a development program. The result
can be documented as part of the overall
test strategy, which can be considered as a
blue print to be applied by the projects. On a
project level, the product risk analysis is input
for the projects’ test approach documented
in a test plan. Note that PRISMA is a method
for product risk management, not for project
risks. In practice it is often the combination
of product risks and project risks that
determines the detailed test approach.

Product risk analysis should be used to
determine the appropriate test approach
and to select test design techniques in such
a way that the items with the highest risks
are tested first and more intensively than

TWEETABLE

The PRISMA method can be
used at every level of testing, e.g.
component, integration, system,
and/or acceptance testing.

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

3

PA
G

E

the areas with low risk. The output of the
risk analysis may even also influence the
development approach, e.g. developing
high risk areas as part of an initial increment
to allow early testing or assigning the most
experienced engineers to higher risk areas.

Risk tracking should be done throughout
the project. This can be done by periodically
repeating (part of) the risk analysis and
validating the initial risk analysis. Also test
monitoring and control, including reporting,
should be organised around these risks. Too
often initially, risks are identified and never
looked at again further on in the project.

	 3. Good Enough 		
		 Testing
At a closer look risk based testing, and
therefore also the method discussed in this
paper, are highly related to the concept
of “good enough testing”. James Bach
introduced the idea in 1997 (Bach, 1997)
and it has caused some division in the
testing community, at least. On one side of
the fence, some experts think it’s a cop-out,
a compromise too far & it’s too simplistic
to be useful, it promotes shoddy work and
so on. On the other hand, its supporters
promote it as something that reflects what
we do in real life where something less than
a “perfect” solution is inevitable. The good
enough approach is helpful to understanding
the risk-based test approach. It is a good
framework for the (release) decision-making
in projects where risks are being taken. Were
you ever asked as a tester, “Is the system
good enough to ship?” When the time
comes to make the big decision, how could
you answer that question? If you say, “Well,
it’s just not ready,” the project manager just
thinks, “Testers always say that, they’re
never happy” and you are dismissed as a
pessimist. Suppose you say, “Well, it looks
ready to me,” will your project manager put
a piece of paper under your nose, asking
you to sign it? If you sign, are you taking
someone else’s responsibility? So, what is
“Good enough?” and how does it help with
the risk based testing?

“Good enough” is a reaction to the formalism
in testing theory. It’s not reasonable to aim
at zero-defects (at least in software), so why
do you pretend to yourself and pretend to
the users and customers that you’re aiming
at perfection? The zero-defect attitude just
doesn’t help. Your customers and users live in
the real world, why don’t we? Compromise is
inevitable, you always know it’s coming, and
the challenge ahead is to make a decision
based on imperfect information. As a tester,

TWEETABLE

The Product Risk Management
(PRISMA) method has been
developed in practice and is
being applied in many projects
and companies in a wide range of
industries. The method supports
the test manager in doing risk-
based testing.

TWEETABLE

“Good enough” is a reaction to
the formalism in testing theory.
It’s not reasonable to aim at zero-
defects (at least in software), so
why do you pretend to yourself
and pretend to the users and
customers that you’re aiming at
perfection?

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

4

PA
G

E

don’t get upset if your estimates are cut down
or your test execution phase is squeezed.
Guilt and fear should not be inevitable just
because a project is constrained for budget
and resources and has more than zero
defects remaining.

The definition of “good enough” in the context
of a system (or increment / enhancement) to
be released is:

	 1.	It has sufficient benefits.
	 2.	It has no critical problems.
	 3.	Its benefits sufficiently outweigh its
		 non-critical problems.
	 4.	In the present situation, and all things
	 	 considered, delaying its release to
		 improve it further would cause more
 		 harm than good.

This definition means that there is already
enough of this product working (this system,
increment or enhancement) for us to take it
into production, use it, get value, and get the
benefit. “It has no critical problems” means
that there are no severe faults that make it
unusable or unacceptable. At this moment in
time, with all things considered, if we invest
more time or money trying to perfect it that
will probably cost us more than shipping early
with the known problems. This framework
allows us to release an imperfect product on
time because the benefits may be worth it.
So how does risk based testing fit into this
“good enough” idea?

Firstly, have sufficient benefits been
delivered? The tests that we execute must at
least demonstrate that the features providing
the benefits are delivered completely, so we
must have evidence of this. Secondly, are
there any critical problems? The incident
reports that record failures in software provide
the evidence of at least the critical problems
(and as many other problems as possible).
There should be no critical problems for it to
be good enough. Thirdly, is our testing good
enough to support this decision? Have we

provided sufficient evidence to say these
risks are addressed and those benefits
are available for release? In essence these
questions are all about balancing; spending
the resources on testing to deliver good
enough quality and acceptable level of risk.

Who Decides?

It is not a tester’s responsibility to decide
whether the product is good enough. An
analogy that might help here is to view the
tester as an expert witness in a court of law.
The main players in this familiar scene are:

- 	The accused (the system under test)
- 	The judge (project manager)
- 	The jury (the stakeholders)
- 	Expert witness (the tester)

In our simple analogy, we will disregard
the lawyer’s role. We will assume that the
prosecution and defence are equally good
at extracting evidence from witnesses and
challenging “facts” and arguments. We will
focus on the expert witness role; these are
people who are brought into a court of law
to present and explain complex evidence in
a form for laymen (the jury) to understand.
The expert witness must be objective and
detached. If asked whether the evidence
points to guilt or innocence, the expert
explains what inferences could be made

Figure 1: Balancing testing with quality & risks

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

5

PA
G

E

based on the evidence, but refuses to judge.
In the same way, the tester might simply
state that based on evidence “these features
work, these features do not work, these risks
have been addressed, these risks remain”. It
is for others to judge whether this makes a
system acceptable.

The tester is there to provide information
for the stakeholders to make a decision.
After all, testers do not create software or
software faults; testers do not take the risks
of accepting a system into production.
Testers present to their management and
peers an informed and independent point
of view. When asked to judge whether a
product is good enough, the tester might
say that on the evidence obtained, these
benefits are available, but these risks still
exist. However, if as a tester you are actually
asked to make the decision, what should
you do? The answer is that you must help
the stakeholders make the decision, but not
make it for them. The risks, those problems
that we thought say 6 months ago could
occur, and which in your opinion would
make the system unacceptable, might
still exist. If those were agreed with the
stakeholders at that time, the system cannot
now be acceptable, unless they relax their
perceptions of the risk.

The judgement on outstanding risks must
be as follows:

- 	 There is enough test evidence now
 	 to judge that certain risks have been
 	 addressed.
- 	 There is evidence that some features do
 	 not work (the risk has materialized).
- 	Some risks (doubts) remain because of
 	 lack of evidence (tests have not been
	 run, or no tests are planned).

This might seem less than ideal as a
judgement, but is preferable to the unrealistic,
ideal-world acceptance criteria discussed
earlier. You may still be forced to give an
opinion on the readiness of a system but we

believe that by taking this principled position
as an expert witness (and taking it as early in
the project as possible) you might raise your
credibility with management. Management
might then give you the right responsibilities
on future projects.

The Classic Squeeze on Testing

The well-known squeeze on testing occurs
when the developers deliver late into test
but the go-live deadline remains fixed. The
exit criteria might be used to determine
what happens next, but all too often it is
obvious that these criteria cannot be met
in time. The pressure to release might be
so great that the exit criteria are set aside.
There may be some attempt to downgrade
the severe bugs perhaps. Exit criteria are
an uncomfortable reminder of the idealistic
attitude in the early stages of the project,
but do not make the decision any easier to
make. The risks that were apparent at the
start of testing have been visible throughout.
When testing is squeezed, some risks may
have been addressed, some benefits may
be available, testers may have revealed new
risks to be addressed, but the outstanding
risk is apparent to all involved. If the decision
to release is actually made, the stakeholders
have explicitly chosen to accept a product
before they have evidence that all risks are
addressed, and that all benefits are available.
This should not simply be considered as a
tester’s problem. The stakeholders have
judged that they had enough information to
make that decision.

In fact, information for making the release
decision becomes available from the
first day of test execution onwards; it’s
just that the balance of testing evidence
versus outstanding risks weighs heavily
against release. A positive (though perhaps
surprising) principle for risk-based testers
is therefore that the time available for test
execution has no bearing on your ability to
do ‘good testing.’

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

6

PA
G

E

	 4. The Testing 		
		 Challenge
The scenario is as follows: you are the test
manager. You have to make a plan and a
budget for testing. Your ideas were, as far
as you knew, reasonable and well founded.
When testing time approaches you might
find that the product is not ready; some of
your testers are not available, or the budget
is just cut. You can argue against these cuts
or argue for more time or other resources,
but that doesn’t always help. You have to
do what you can with a smaller budget and
time frame. You have to test the product
as well as possible, and you have to make
sure it works reasonably well after release.
How to survive? Doing bad testing will
make you the scapegoat for lack of quality.
Doing reasonable testing will make you the
scapegoat for a late release.

You need a creative solution: you have to
change the game. Inform your management
about the impossible task you have, in such
a way that they understand. But it’s also
important to present alternatives. They need
to get a product out of the door, but they
also need to understand the risk.

One strategy is to find the right quality
level. Not all products need to be free of
defects. Not every function needs to work.
Sometimes, you have options related to
lowering product quality. This means you
can cut down testing in less important
areas. Another strategy is priority: testing
should find the most important defects first.
Most important often means “in the most
important functions.” These functions can
be found by analysing how every function
supports the objectives of the system, and
checking which functions are critical and
which are not. You can also test more where
you expect more defects. Finding the worst
areas in the product soon and testing them
more will give you more defects. If you find

many serious problems, management will
often be motivated to give you more time
and resources. In practice it is often about a
combination of most important (discussed in
section 5) and worst (discussed in section 6)
area priority. Risk based testing should take
care that whenever the team has to stop
testing, they have done the best testing in
the time available.

	 5. The Most 			
		 Important Parts 	
		 of the Product
Testing is always a sample. You can never
test everything, and you can always find
more to test. Thus you will always need
to make decisions about what to test and
what not to test; what to test more or what
to test less. The general goal is to find the
worst defects first, and to find as many such
defects as possible. A way to ensure this is to
find the most important functional areas and
product properties. Finding as many defects
as possible can be improved by testing
more in the bad areas of the product. This
means you need to know where to expect
more defects, and this will be explained in
the next section.

You need to know the most important areas of
the product. In this section, a way to prioritise
this is described. The ideas presented here
are not the only valid ones. In every product,

TWEETABLE

At system level, one probably
has to test first what is most
important in the application.
This can be determined by
looking at visibility of functions,
at frequency of use and at the
possible cost of failure.

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

7

PA
G

E

there may be other factors playing a role, but
the factors given here have been valuable in
many projects. Important areas can either
be functions or functional groups, or quality
attributes such as performance, reliability,
security etc. In this paper we will use the
generic term ‘test items’ for this.

Major Factors to Look for When
Determining the Importance of Test Items
Include:

Critical Areas (Cost and Consequences
of Failure)

You have to analyse the use of the software
within its overall environment, and analyse
the ways the software may fail. Find the
possible consequences of such failure
modes, or at least the worst ones. Take
into account redundancy, backup facilities
and possible manual checks of output by
users, operators or analysts. A product that
is directly coupled to a process it controls is
more critical than a product whose output is
manually reviewed before use. If a product
controls a process, this process itself should
be analysed.

A possible hierarchy is the following:

- 	A failure would be catastrophic
	 The problem would cause the system
	 to stop, and maybe even take down
	 things in the environment (stop the entire
	 workflow or business or product). Such
	 failures may deal with large financial
	 losses or even damage to human life.
- 	A failure would be damaging
	 The program may not stop, but data may
 	 be lost or corrupted, or functionality may
 	 be lost until the program or computer is
	 restarted.
- 	A failure would be hindering
	 The user is forced to work around, and
	 to execute more difficult actions for
	 reaching the same results.
- 	A failure would be annoying
	 The problem does not affect 			

	 functionality, but rather makes the
	 product less appealing to the user or
	 customer.

Of course damage will mean very different
things depending on the product, for some
products it is related to (human) safety and
for some ‘only’ to financial damage. Another
way of looking at user importance is to take
the view of marketing. What are the (unique)
selling points of this new product for our
customers?

Visible Areas

The visible areas are areas where many
users will experience a failure, if something
goes wrong. Users do not only include the
operators sitting at a terminal, but also final
users looking at reports, invoices, or the like,
or being dependent on the service delivered
by the product which includes the software.
A factor to take into account under this
heading is also the tolerance of the users to
such problems. It relates to the importance
of different functions or quality attributes,
see above. Software intended for untrained
or naive users, especially software intended
for use by the general public, needs careful
attention to the user interface. Robustness
will also be a major concern. Software
which directly interacts with hardware,
industrial processes, networks etc. will be
vulnerable to external effects like hardware
failure, noisy data, timing problems etc.
These kinds of products need thorough
validation, verification and re-testing in
case of environment changes. Regarding
visibility often a distinction is made between
external visibility (outside the organisational
boundaries) and internal visibility whereby
‘only’ our own users experience the
problem.	

Most Used Areas

Some functions may be used every day, other
functions only a few times. Some functions
may be used by many, some by only a few

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

8

PA
G

E

users. Give priority to the functions used
often and heavily. The number of transactions
per day may be a start in helping to find
priorities.

A way to set priorities is to skip the testing
of functional areas, which will only be used
once per quarter, half-year or year. Such
functionality may be tested after the release,
before its first use. Sometimes this analysis is
not so obvious. In process control systems,
for example, certain functionality may be
invisible to the outside. It may be helpful to
analyse the design of the complete system.

A possible hierarchy is outlined here:

- 	Unavoidable
	 An area of the product that most users
 	 will come in contact with during an
	 average usage session (e.g. start-ups,
	 printing, saving).
- 	Frequent
	 An area of the product that most users
 	 will come in contact with eventually, but
 	 maybe not during every session.
- 	Occasional
	 An area of the product that an average
	 user may never visit, but that deals
	 with functions a more professional or
	 experienced user will need occasionally.
- 	Rare
	 An area of the product which most users
	 will never visit and which is visited only if
	 users do very uncommon steps of
	 action. Critical failures, however, are still
	 of interest.

An alternative method for picking important
requirements is described in (Karlsson et al,
1997).

	 6. The Worst Areas
 		 of the Product
The worst areas are the ones having most
defects. The task is to predict where
most defects are located. This is done by
analysing probable defect generators. In this
section, some of the most important defect
generators and symptoms for defect prone
areas are presented. There exist many more,
and often local factors must be included in
addition to the ones mentioned here. This
applies to the factors for identifying the
most important parts and for the factors
identifying the worst areas.

Complex Areas

Complexity is maybe the most important
defect generator. More than 200 different
complexity measures exist, and research
into the relation between complexity and
defect frequency has been going on for
more than 20 years. However, no predictive
measures have until now been generally
validated. Still, most complexity measures
may indicate problematic areas. Examples
include number of variables used, complex
logic and complex control structure. This
means one may do several complexity
analyses, based on different aspects of
complexity and find different areas of the
product that might have problems.

Changed Areas

Change is an important defect generator
(Khoshgoftaar et al, 1998). One reason is
that changes are subjectively understood as
easy, and thus not analysed thoroughly for
their impact. Another reason is that changes
are done under time pressure and analysis
is not completely done. The results are
side effects. In general, there should exist
a logging of changes done. This is part of
the configuration management system (if
something like that exists). You may sort the

TWEETABLE

After test execution has started
and one has found some defects,
one may analyse these in order
to focus testing even more and
tune the test approach.

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

9

PA
G

E

changes by functional area or otherwise and
find the areas which have had exceptional
amount of changes. These may either
have been badly designed from the start,
or have become badly designed after the
original design has been destroyed by the
many changes. Many changes are also a
symptom of badly done analysis. Thus,
heavily changed areas may not correspond
to user expectations.

New Technology and Methods

Programmers using new tools, methods
and technology experience a learning curve.
In the beginning, they may generate many
more faults than later. Tools include CASE
(Computer Aided Software Engineering)
tools, which may be new in the company,
or new in the market and unstable. Another
issue is the programming language, which
may be new to the programmers. Any new
tool or technique may give trouble.

Another factor to consider is the maturity
of methods and models. Maturity means
the strength of the theoretical basis or
the empirical evidence. If software uses
established methods, like finite state
machines, grammars, relational data
models, and the problem to be solved may
be expressed suitably by such models,
the software can be expected to be quite
reliable. On the other hand, if methods or
models of a new and unproven kind, or near
the state of the art are used, the software
may be more unreliable.

Most software cost models include
factors accommodating the experience of
programmers with the methods, tools and
technology. This is as important in test
planning, as it is in cost estimation.

People Involved

The idea here is the thousand monkey’s
syndrome. The more people that are

involved in a task, the larger is the overhead
for communication, and the greater the
chance that things will go wrong. A small
group of highly skilled staff is much more
productive than a large group with average
qualifications. In the COCOMO (Boehm,
1981) software cost model, this is the largest
factor after software size. Much of its impact
can be explained from effort going into
detecting and fixing defects. Areas where
relatively many and less qualified people
have been employed may be identified for
better testing. It is important in this context
to define what qualified means, e.g. is
it related to the programming language,
domain knowledge, development process,
working experience in general, etc.

Care should be taken in that analysis: Some
companies (Jørgensen, 1984) employ their
best people in more complex areas, and
less qualified people in easy areas. Then,
defect density may not reflect the number of
people or their qualification. A typical case
is the program developed by lots of hired-
in consultants without thorough follow-up.
They may work in very different ways.

Time Pressure

Time pressure leads to people making
short cuts. People concentrate on getting
the problem solved, and they often try
to skip quality control activities, thinking
optimistically that everything will go fine.
Only in mature organizations is this optimism
controlled.

Time pressure may also lead to overtime at
work. It is well known, however, that people
lose concentration after prolonged periods
of work. Together with short cuts in applying
reviews and inspections, this may lead to
extreme levels of defect density. Data about
time pressure during development can
best be found by studying time lists, or by
interviewing management or programmers.

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

10

PA
G

E

Optimisation

The COCOMO cost model mentions shortage
of machine time and memory as one of its
cost drivers. The problem is that optimisation
needs extra design effort, or that it may be
done by using less robust design methods.
Additional design effort may take resources
away from defect removal activities, and
less robust design methods may generate
more defects.

Defect History

Defect repair leads to changes, which lead
to new defects, and therefore defect prone
areas tend to persist. Experience shows
that defect prone areas in a delivered
system can be traced back to defect prone
areas in reviews and unit and subsystem
testing. Evidence in studies (Khoshgoftaar
et al, 1998) and (Levendel, 1991) show that
modules that had faults in the past are likely
to have faults in the future. If defect statistics
from design and code reviews, and unit and
subsystem testing exist, then priorities can
be chosen for later test phases.

Geographical Spread

If people working together on a project
have a certain distance between each other,
communication will be worse. This is true
even on a local level. Here are some ideas

that have proven to be valuable in assessing
if geography may have a detrimental effect
on a project:

- 	People having their offices in different
	 floors of the same building will not 	 	
	 communicate as much as people on the
 	 same floor.
- 	People sitting more than 25 meters apart
 	 may not communicate enough.
- 	A common area in the workspace, such
	 as a common printer or coffee machine
	 improves communication.
- 	People sitting in different buildings do
 	 not communicate as much as people in
	 the same building; people sitting in
	 different labs communicate less than
	 people in the same lab do.
- 	People from different countries may have
	 communication difficulties, both
	 culturally and with the language.
- 	 If people reside in different time zones,
	 communication will be more difficult.

In principle, geographical spread is not
dangerous. The danger arises if people with
a large distance have to communicate; for
example, if they work on a common part of
the system. You have to check areas where
the software structure requires the need for
good communication between people, but
where these people have geography against
them.

Other factors that can be considered
include:

- 	New development vs. re-use: areas that
	 are totally newly developed (from
	 scratch) are likely to contain more
	 defects than those that are (largely)
	 re-used.
- 	 Interfacing: practice has shown that
	 many defects are related to interfaces
	 between components, often due to
	 communication problems. Components
	 with more interfaces are therefore often
	 more defect-prone. A distinction in this 	

Figure 2: Under pressure things only get worse

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

11

PA
G

E

	 context is often made between internal
	 and external interfaces.
- 	Size: sometimes people loose overview if
	 components get too large. Therefore 		
	 (too) large components may be more
	 defect prone than average sized
	 components.

What to do if you do not know anything
about the project, also the defect generators
cannot yet be identified? In that case, start
with running an exploratory test. A first
rough test should find defect prone areas;
in the next test you can then concentrate on
these areas. The first test should cover the
whole system, but be very shallow. It should
only cover typical business scenarios and
a few important failure situations. You can
then determine in which areas the most
problems were revealed, and give priority to
these areas in the next round of testing. The
next round will then be a deeper and more
thorough testing of prioritised areas. This
two-phase approach can always be applied,
in addition to the planning and prioritising
done before testing.

	 7. The PRISMA 		
		 Process
In this section the process is described that
can be followed when performing a product
risk assessment using the PRISMA method.

The central theme in the PRISMA process
is the creation of the so-called product risk
matrix. Using the factors - as explained in
the previous sections - for each item to be
tested (risk item), the impact of defects and
the likelihood of defects is determined. By
assigning numeric values to both, a risk
item can be positioned in the product risk
matrix. The standard risk matrix is divided
in four areas (quadrants I, II, III and IV), each
representing a different risk level and type.
A different risk level/type should lead to a
different test approach documented in a test
plan.

TWEETABLE

Software which directly interacts
with hardware, industrial
processes, networks etc. will
be vulnerable to external effects
like hardware failure, noisy data,
timing problems etc.

TWEETABLE

As a tester, don’t get upset if
your estimates are cut down
or your test execution phase is
squeezed. Guilt and fear should
not be inevitable just because a
project is constrained for budget
and resources.

Figure 3: PRISMA process overview

Figure 4: Product risk matrix

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

12

PA
G

E

To support the PRISMA process a supporting
freeware software tool has been developed.
Output examples of this tool are used
throughout the remainder of this paper (e.g.
figures 5, 6 and 8).

7.1 Planning

Gathering Input Documents

As always, a structured planning phase
is the key to success. During the planning
the input documents (often the same as the
test basis) are determined and collected. Of
course the relevant input documents depend
largely on the test level on which the risk
analysis is performed. One needs to check
that the input documents are at the required
quality level and that they contain the items
(referred to as test items) that can be used
in this process. The inputs don’t have to be
‘final’ or ‘accepted,’ but sufficiently stable
to use them for product risk analysis. Gaps
(e.g. in requirements) should be identified
and reported to the document owner. If the
input documents are not available at the
correct level, one needs to consider how and
if to continue with the product risk analysis
process. Ideally the documents to be used
are a requirements document (for testing at
system level), or an architectural document
(for development testing).

Identifying Risk Items

The items that are used for the risk
assessment are identified based on the input

documents: the risk items. If assumptions are
made (e.g. related to ambiguousness in input
documents), these should be documented.
The most likely scenario can be determined
by interviewing the document owner and/or
stakeholders. As a rule of thumb there should
not be more than approximately 30 – 35 risk
items to keep the process workable. This
often means the items (e.g. requirements)
as stated in the input document need to be
grouped into logical units. The identified risk
items will be structured following a hierarchy.
It is most often not useful to consider each
and every elementary requirement as a
separate risk item.

Depending on the test strategy, the project
may decide to do a separate, more detailed,
product risk analysis to assess these
elementary requirements per component or
subsystem at a later stage, using the higher
level risk analysis result as an input.

The identified risk item list should be
uniquely identified and understandable to
the participants. The reference identification
can be a number, but it may also contain a
code or abbreviation that is meaningful in
the project. Per risk item, if possible, a link
should be provided to the relevant parts of
the input documentation. A description of
the risk item can be added as a one-liner.
For the participants, this description should
give a clear idea which risk item they have
to assess.

Determine Impact and Likelihood
Factors

For product risk analysis two ingredients are
relevant: the likelihood that a failure occurs
and the impact if this happens. In sections 5
and 6 these two ingredients are discussed
and several factors that influence the impact
and/or likelihood are recommended to
be used are presented. The test manager
determines the factors that the project will use
to assess the risk items in terms of likelihood

TWEETABLE

Finding the worst areas in
the product soon and testing
them more will give you more
defects. If you find many serious
problems, management will
often be motivated to give you
more time and resources.

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

13

PA
G

E

and impact. Ideally an initial list of factors
is already determined at an organisational
level, e.g. in the test strategy. The project
may of course have good reasons to deviate
from the standard set of risk factors.

In addition one will have to select a value
set for each factor. Preferably these values
are not presented as numbers, but with
meaningful descriptions, e.g. ‘less than
5 interfaces,’ ‘more than 10 interfaces’
etc. If possible, the values should have an
objective and measurable meaning (e.g. ‘< 1
KLOC’ instead of ‘medium size’). However,
in practice most often numeric value sets
are used such as 1 to 3, 1 to 5 or 0, 1, 3, 5,
9. The first one is probably the easiest one
to use and related to the low (1), medium (2)
and high (3) concept. Purely from a testing
perspective the last one is preferred since it
more clearly identifies the high risks, since
the 9 is highly distinguishing compared to
the other values within the set. Preferably
the value set with interpretations for each
factor should already have been determined
at a higher level than at project level.

Define a Weight for Each Factor

It is also possible to use weights whereby
one factor is considered more important
than another factor, e.g. one factor could
have 2 times the ‘worth’ of another factor.
Again weights for the factors are preferably
determined in the test strategy, but can be
tailored for project specific purposes. The
general method is to assign weights, and to
calculate a weighted sum for every area of
the system. Focus your testing on the areas
where the result is highest! For every factor
chosen, assign a relative weight. You can
do this in very elaborate ways, but this will
take a lot of time. Most often, three weights
will suffice. Values may be 1, 2, and 3 (1 for
“factor is not very important,” 2 for “factor
has normal influence” and 3 for “factor has
strong influence”). Once historical project
data is gathered one can start fine tuning
the weights.

Select Stakeholders

The stakeholders that will be involved in
the product risk analysis are identified and
selected. Typically different roles from the
business and from within the project will be
selected. Examples are project manager,
developers, software architect, marketing,
end user, business manager and application
engineer. This is an important activity,
which is explained by the statement “a
stakeholders forgotten means related risks
are not identified.”

Theoretically every stakeholder could be
asked to assign values to every factor. In
practice it is much more useful to assign
only those factors that are relevant to the
stakeholder, i.e. related to his role. Typically
the factors for impact should be assigned
to business representatives and factors
for likelihood to technical experts, e.g.
the software architect, senior engineer.
For obvious psychological reasons the
method prescribes not to use weight factors
for stakeholder, i.e. each stakeholder is
considered equally important. It is also
highly recommended to assign each factor
to at least two stakeholders.

The test manager who is responsible for
assigning the roles has to make a good
balance in:

- 	 choosing the appropriate persons for the
 	 roles depending on the test level.
- 	 choosing “technical” roles to fill in the
	 likelihood and “business” roles to fill in
	 impact.
- 	 involving sufficient knowledge areas,
	 both for impact and likelihood parts.

Scoring Rules

Finally the rules are set that apply to the
scoring process. One of the common pitfalls
of the risk analysis is that the results tend to
cluster, i.e. the result is a two-dimensional
matrix with all risk items close to each

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

14

PA
G

E

other. To prevent this in an efficient way, the
stakeholders should be enforced to score
the factors on a full range of the values.
Rules will support this process. Examples
are ‘the full range of values must be used,’
‘all factors shall be scored,’ ‘no blanks
allowed’ and ‘homogeneous distribution of
values assigned to a factor.’

7.2 Kick-Off

Optionally, a kick-off meeting can be
organized in which the test manager explains
to all stakeholders their role in the process.
Although optionally, the kick-off meeting
is highly recommended. After the kick-off
meeting the process and expected actions
should be clear to all participants. The kick-
off meeting can also be used to explain the
list of risk items, factors and to make clear to
which factors they have to assign a value.

The kick-off phase of the risk analysis is
to ensure that not only the process, the
concept risk based testing and the risk
matrix, but also the purpose of the activities

are clear. A clear explanation and common
view will contribute to a better deployment
and motivation. Discussion about the
usefulness of the process and expected
benefits should take place here, not later
during the process. Items to discuss here
are: e.g. how to perform the individual
preparation, explanation of the tools to be
used, and the applicable deadlines. The test
manager also provides an overview of the
remainder of the process. It should be made
clear to the stakeholders what to expect at
the consensus meeting organized at a later
stage and what will happen at the end of the
process. The test manager explains to the
stakeholders what their role in this process
is and how their contribution influences the
test approach for the project.

The risk items and factors are explained in
detail, as the stakeholders will be requested
to score them. The exact meaning of the
risk items, the factors, the value set(s) and
assumptions must be made very clear to
them. To obtain reliable results there must be
a common understanding of all properties of
the risk assessment. At the end of the kick-off
meeting, commitment from the stakeholders
is needed, to ensure they will participate in a
meaningful manner.

7.3 Individual Preparation

During the individual preparation values
are assigned to the factors per risk item
by the participants. The participants score
by selecting (the description of) the value
that fits best with the perceived risk for the
corresponding factor regarding a risk item.
This step can be done manually, but is often
supported by providing the participants with
Excel sheets that even support automatic
checking against the scoring rules.

TWEETABLE

During the latter part of test
execution, one should focus on
areas where defects have been
found, and one should generate
more tests aimed at the type of
defect detected before.

TWEETABLE

One needs to check that the
input documents are at the
required quality level and that
they contain the items that can
be used in this process. The
inputs don’t have to be ‘final’
or ‘accepted,’ but sufficiently
stable to use them for product
risk analysis.

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

15

PA
G

E

The values filled in by the stakeholder are
based on perceived risks: the stakeholder
expects that something could go wrong
(likelihood of defects) or is important for the
business (impact of defects). Perceived risks
are often based on personal assumptions
of the stakeholder. These assumptions
also have to be documented. Later, in the
consensus meeting, these assumptions are
highly useful to compare the scores, explain
unexpected results and outliers, e.g. ‘Why
did we score this way?’ and ‘Did we make
different assumptions?’

The values are checked against the rules
that were pre-determined by the test
manager. For example: are the selected
values sufficiently distributed, and are all
assigned factors to the stakeholder scored
upon completion? It is important to get
an (as much as possible) even distribution
between the various possible values when
scoring for a certain factor. This is essential
for a useful product risk analysis. Assigning
values is not about absolute values but
about relative values, e.g. which is the most
complex item, what item is most often used.
By using both high and low values during

the scoring process, clearer testing priorities
can be set at a later stage thanks to a more
differentiated scoring.

Example of scoring:

During this phase, the test manager has a
supporting role to the (first time) participants,
e.g. re-explaining in detail the process, the
rules and possibly the factors.

Figure 5: Example of participants’ score sheet (from PRISMA tool)

Table 1: Examples of good and bad scoring practices

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

16

PA
G

E

7.4 Gather Individual Scores

Entry Check

During the gathering of individual scores the
test manager first checks whether scoring
has been done correctly. If there are still
violations to the rules, the test manager
should discuss this with the participant.
Maybe the meaning of a factor or value should
be clarified or some additional assumptions
have to be made and documented. The test
manager should also check if the participant
documented his assumptions. If needed,
the applicable participant has to (partly)
repeat the individual preparation. A check
needs to be done by the test manager if at
least two scores for each factor have been
received. If a rule violation can’t be resolved
by the stakeholder and test manager, e.g.
when they agree that ‘even distribution’
is not applicable for a certain factor; then
this should be discussed in the consensus
meeting.

When the deadline is approaching, the test
manager should remind the stakeholders to
submit their score and return them in time.
Stakeholders that didn’t return their scores on
time shall be approached individually. Before
the next phase of the process is entered,
there should be at least a representative
response from each group of stakeholders
or roles in the project.

Processing Individual Scores

The test manager now processes and
analyses the individual scores by calculating
the average value. He also prepares a list of
issues to be discussed in the consensus
meeting. For each risk item the likelihood
and impact is determined. Per risk item the
scores of the factors determining likelihood
are added up and separately the scores of
the impact factors are added up. Each risk
item can now be positioned in the so-called
risk matrix.

Candidates for the issue list to be discussed
in the consensus meeting are all outstanding
violations of rules:

- 	When the test manager together with the
 	 stakeholder have decided to escalate a
 	 rule violation.
- 	When the total result of all assessment
 	 forms has led to unresolved risk items.
	 A risk item is qualified as unresolved
	 when the distribution of all assigned
	 values for a factor exceeds a pre-
	 determined threshold, e.g. a stakeholder
	 assigns the highest value and another
	 stakeholder assigns the lowest value
	 for the same factor regarding a certain
	 risk item.
- 	Also risk items that are positioned too
	 close to the centre of the risk-matrix
	 where all quadrants come together
	 should also be discussed, e.g. within the
	 circle of the risk matrix example in figure
	 6.

The threshold value and the other rules are
determined in the project rule set by the test
manager during the planning phase.

TWEETABLE

A product that is directly coupled
to a process it controls is more
critical than a product whose
output is manually reviewed
before use. If a product controls
a process, this process itself
should be analysed.

TWEETABLE

Risk tracking should be done
throughout the project. This
can be done by periodically
repeating (part of) the risk
analysis and validating the initial
risk analysis.

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

17

PA
G

E

7.5 Consensus meeting

The consensus meeting starts by the
test manager explaining the objectives of
the meeting. At the end of this meeting a
common understanding should be achieved
on the (perceived) product risks. The final
result should be a risk matrix committed
by the stakeholders, and adhering to the
rule set. A consensus on all scores is not
necessarily needed and sometimes even
impossible. After all each participant has
its own interests and views regarding the
importance of specific risk items depending
on his background and role.

During the meeting the items from the issue
list are discussed between stakeholders
and test manager with the purpose to reach
consensus and understanding each other’s
arguments. The discussion takes place per
risk item per factor using the documented
assumptions. Often different understandings
of the requirements area source of different
scoring. This should lead to a change
request on the requirements since these are
then obviously not unambiguous.

At the end of the discussion final scores
are determined and the resulting risk matrix

is presented (see figure 6). This resulting
matrix should always be validated with the
stakeholders: “Is the matrix as expected or
are there any surprising results?” If results
are not according to the expectations of the
stakeholders they should be (re-)discussed.
Common sense should always be a part of
any method; using the method too strictly
can be dangerous.

At the end of the meeting, the test manager
summarizes the results and checks if the
intended objectives are met. If needed, a
follow-up meeting could be organised, or
a specific discussion meeting in a smaller
group, e.g. when the requirements team has
dealt with questions that were raised.

Larger Projects: More Risk Matrices

Within one project several risk matrices can
be created. Examples include:

- 	A matrix for an acceptance test and risk
 	 matrices for the supplier tests
- 	A matrix at master test plan level and a
 	 matrix at specific test phases.

Whenever several risk matrices are created,
they should be consistent. It is often possible
to re-use parts of a matrix from a higher-
level test plan for a lower-level test plan. For
example, when selecting stakeholders for a
risk matrix for a lower-level test plan, it can
be decided not to select any stakeholders to
assess the business risks (impact factors).
Instead the business risks are copied from
the higher-level test plan. Consistent means
that risk items, which are present in more
than one matrix, have comparable scores.
When a risk item in the risk matrix from
the higher-level test plan is split up into
several items in a lower-level risk matrix, the
average risk score of these items must to be
comparable to the score of the risk item in
the higher level product risk matrix.

Figure 6: Example of a risk matrix (from the
PRISMA tool)

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

18

PA
G

E

7.6 Define a differentiated test
approach

Based on the test items’ location in the
risk matrix, all test items are prioritised.
The result is ordering of all test items, the
most important item first. In addition to
prioritization a differentiated test approach
for the test items needs to be defined based
on their position in the risk matrix. The test
approach usually has two major aspects:
the test depth used, and the priorities for
testing. Test depth can be varied by using
different test design techniques, e.g. using
the decision table technique on high-risk
test items and using ‘only’ equivalence
partitioning for low risk test items. The
problem with varying test depth based on
the application of test design techniques is
that not all (test) projects are mature enough
to use a set of test design techniques. Many
test projects still just write test cases based
on requirements and do not practice test
design.

In addition to using different test design
techniques there are alternatives to defining
a differentiated approach based on the
resulting risk matrix. Practices to consider
that can be applied for defining a differentiated
approach include static testing, review of test
designs, re-testing, regression testing, level
of independence and exit criteria such as a
statement coverage target. Also high-risk
items can be tested by the most experienced
engineers, another way to mitigate the risk.

Let’s consider the testing practices mentioned
more in detail and how they can be used to
define a differentiated test approach:

- 	Static testing	
	 Based on the identified risks one
	 can choose to do more reviewing,
	 e.g. inspection on those areas that are
	 considered high risk.
- 	Reviewing of test designs	
	 For high-risk areas the test designs

	 (or test cases) can be reviewed with
	 stakeholders or other testers.
- 	Re-testing
	 With re-testing, also called confirmation
 	 testing, one can decide to re-run the full
	 test procedure or just the step that failed
	 and re-test the defect solved in isolation.
- 	Regression Testing	
	 Of course the outcome of the risk
	 assessment can also drive the regression
	 test, whereby high-risk areas should be
	 most intensively covered in the
	 regression test set.
- 	 Level of Independence	
	 It is possible to have one tester define
	 the test cases and test procedures,
	 and another tester to execute the test
	 procedure. The independent test
	 executor tends to be more critical
	 towards the test cases and the way
	 they are executed and as a result
	 will likely find more defects. Also for
	 component testing one can make pairs
	 whereby two programmers
	 test each other’s software.
- 	 Exit Criteria 	
	 Different exit criteria, also called
	 completion criteria, can be used for
	 different risk levels. Requirements
	 coverage or code coverage criteria
	 should be stricter for higher risk
	 areas. Other exit criteria that can used
	 to differentiate include percentage of test
	 cases executed, number of outstanding
	 defects and defect detection rate.

Note that the outcome of the product
risk assessment can also influence the
development process. Choices made in the
development process will often have an effect
on the residual product risks, especially on
the likelihood of defects.

Of course initially, the content of the risk
matrix is based on the perceived risks at an
early stage of the project. During the project
the test manager has to maintain the matrix,
based on lessons learned e.g. defects found

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

19

PA
G

E

or other measured indicators like DDP
(Defect Detection Percentage), (changed)
assumptions, updated requirements or
architecture. Changes in the project’s scope,
context or requirements will often require
updates of steps in the risk assessment
process. The risk assessment process
therefore becomes iterative.

	 8. Practical 			
		 Experiences
It unfortunately has not been possible to
perform a controlled comparison between
test projects using PRISMA and other test
projects, either using another method for
risk based testing, or not applying risk
based testing at all. Therefore, to determine
whether the method offers benefits for the
testing, a questionnaire study was performed
within approximately twenty companies that
already had applied the method on several
of their test projects.

The main goal of the study was to investigate
whether the test managers (and testers)
consider PRISMA beneficial for their task of

detecting defects. The rationale behind this
goal is that test managers tend to use or
not use a method according to the extent to
which they believe it will help them perform
their job better. This determinant is referred to
as the perceived usefulness of the PRISMA
method. However, even if a test manager
believes that a given technique is useful,
they may, at the same time, believe that it is
too difficult to use and that the performance
benefits are outweighed by the effort of
using a more systematic approach. Hence,
in addition to usefulness, perceived ease-
of-use is a second important determinant to
take into account.

To define these concepts in more detail, the
following definitions are introduced:

- 	Perceived usefulness is “the degree
	 to which a person believes that using
	 a particular method or technique would
	 enhance his or her job performance.”
	 This follows from the definition of the
	 word useful: “capable of being used
	 advantageously.” Hence, a method high
	 in perceived usefulness is one for which
	 a test manager believes in the existence
	 of a positive use-performance
	 relationship.
- 	Perceived ease of use, refers to “the
	 degree to which a person believes that
	 using a particular system would be free
	 of effort.” This follows from the definition
	 of “ease”: “freedom from difficulty or
	 great effort.” A technique, method, or
	 tool that is easy to use is more likely to
	 be accepted by users.

TWEETABLE

Some functions may be used
every day, other functions only
a few times. Some functions
may be used by many, some by
only a few users. Give priority
to the functions used often and
heavily.

Table 2: Survey items for usefulness and ease-of-use

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

20

PA
G

E

No objective measures are available to
measure the concepts of usefulness and
ease-of-use. Hence, subjective measures are
employed on a scale from 1 (strongly disagree)
to 10 (strongly agree). One may also use the
term linear composite to designate such a
scale. A concept (i.e. usefulness or ease-of-
use) is often characterised by a set of items.
Usefulness has therefore been broken into
two aspects: efficiency and effectiveness. For
each of these items a statement is presented
to the participants. The participants are asked
to respond to each statement in terms of their
own degree of agreement or disagreement. A
score is assigned to each response. Table 1
presents the items that were considered for
the survey.

8.1 Results for the Usefulness

Table 3 exhibits the results of the usefulness
survey. Considering that the score rating is
10, we can conclude that most of our subjects
tend to consider the PBR approach useful.
The results of the usefulness determination
reveal that PRISMA provides the expected
benefits for test projects. The test manager’s
perception on the various items indicates
that PRISMA increases the effectiveness
and efficiency of the defect detection
tasks. This confirms the assumption that
PRISMA exhibits a positive use-performance
relationship.

Interesting comments made by the participants
regarding the usefulness include:

- 	 It supports making the right decisions
	 when the project is under pressure.
- 	Risk is a business language and
	 therefore a good tool to communicate
	 with stakeholders.
- 	A good basis for test estimation and
	 defining a differentiated test approach.
- 	 It provides a framework for test
	 monitoring and control during the project.
- 	A clear focus for the testing activities,
	 also already during development testing.
- 	 It ensures that the most important parts
	 of the product are tested before release.
- 	As a result of the risk assessment, the
	 priority level of the defects found has
	 increased.
- 	A basis for learning and raising
	 awareness about factors that influence
	 the risk, also to be used during process
	 improvement.

8.2 Results for the Ease-of-Use

Table 4 exhibits the results of the usefulness
survey. It is clear that the score of ease-of-
use is lower than with usefulness. In practice
we have found that consultancy training,
workshops etc. are needed to get projects
stated. Only having substantially invested in
the implementation do test managers find
the method easy to use. Also the ease-of-
use seems to depend on the test maturity
level and test awareness in the organisation
(see also specific comments hereafter). Both
statements can also be derived from the
scores, whereby the ease-of-use score had
a large standard deviation. Test managers
with much experience with PRISMA tend to
score much higher, e.g. 7 and above. Based

Table 3: Results for the Usefulness of PRISMA

TWEETABLE

A small group of highly skilled
staff is much more productive
than a large group with average
qualifications.

TWEETABLE

Exit criteria are an uncomfortable
reminder of the idealistic attitude
in the early stages of the project,
but do not make the decision
any easier to make.

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

21

PA
G

E

on these findings, we can conclude that test
managers tend to consider PRISMA easy
to use provided that they have received the
necessary initial practical support. Hence,
there is a large probability that test managers
adopt the method in their test management
practices. Also beware that within the
organisation for stakeholders implementing
the method is a real change process. The
process is simple but not easy.

Interesting comments made by the
participants regarding the ease-of-use
include:

- 	Defining the more or less independent
	 risk items at the correct level and
	 grouping them into approximately 30
	 items is often a challenge.
- 	 It is sometimes difficult to identify the
	 (business) stakeholders and to get them
	 involved, especially the first time.
- 	For some stakeholders it involves a
	 change of their mind set, they now more
	 explicitly become the risk owners.
- 	Making explicit choices is difficult to
	 some (business) stakeholders; they
	 always thought everything was tested
	 ‘fully.’
- 	The interpretation of factors is not
	 easy, a kick-off and good definition of
	 the factors (including scoring rules) is
	 highly recommended.
- 	Development is not always in line with
	 testing priorities, the most important
	 risk items are delivered relatively late in
	 the process.
- 	Defining a differentiated approach based
	 in the risks is difficult; it also depends
	 on the knowledge and skill level of the
	 test engineers involved.
- 	Finally most of the risk assessment
	 is built upon perceived risk early in the
	 project, as projects tend to be dynamic

	 and people learn throughout the project
	 that risk assessment also should be
	 treated this way, and (partly) repeated at
	 several instances, e.g. at milestones.

Finally, one company released defect
numbers recently after measuring DDP for
several years at alpha level. In addition to a
shorter test execution lead time their DDP
has improved by approximately 10% after
the introduction of PRISMA in 2006, as
can be observed by looking at the graph
hereafter.

Table 4: Results for the Ease-of-Use of PRISMA

Figure 7: DDP number Alpha test level

TWEETABLE

Complexity is maybe the most
important defect generator.
More than 200 different
complexity measures exist,
and research into the relation
between complexity and defect
frequency has been going on for
more than 20 years.

TWEETABLE

Risk based testing should take
care that whenever the team
has to stop testing, they have
done the best testing in the time
available.

Practical Risk-Based Testing - Product Risk Management: The PRISMA Method

22

PA
G

E

	 References
• 	Bach, J. (1997), Good Enough Quality:
	 Beyond the Buzzword, in: IEEE
	 Computer, August 1997, pp. 96-98
• 	Bach, J. (1998), A framework for
	 good enough testing, in: IEEE Computer
	 Magazine, October 1998
• 	Boehm, B.W. (1979), Software
	 engineering economics, Prentice-Hall,
	 Englewood Cliffs, NJ
• 	Jørgensen, M. (1994), Empirical studies
	 of software maintenance, Thesis for the
	 Dr.Sceintific degree, Research Report
	 188, University of Oslo
• 	Gerard, P., and N. Thompson, Risk-
	 Based E-Business Testing, Artech House
	 Publishers, ISBN 1-58053-314-0
• 	Karlsson, J. and K. Ryan (1997), A
	 Cost-Value Approach for Prioritizing
	 Requirements, in: IEEE Software,
	 September 1997
• 	Khoshgoftaar, T.M., E.B. Allan, R.
	 Halstead, G.P. Trio and R. M. Flass
	 (1998), Using Process History to Predict
	 Software Quality, in: IEEE Computer,
	 April 1998
• 	Levendel, Y. (1991), Improving Quality
	 with a Manufacturing Process, in: IEEE
	 Software, March 1991
• 	Pol, M. R. Teunissen, E. van Veenendaal
	 (2002), Software Testing, A guide to the
	 TMap Approach, Addison Wesley, ISBN
	 0-201-745712
• 	Schaefer, H. (2004), Risk Based Testing,
	 in: E. van Veenendaal, The Testing
	 Practitioner – 2nd edition, UTN
	 Publishing, ISBN 90-72194-65-9
• 	Veenendaal, E. van (2004), The Testing
	 Practitioner – 2nd edition, UTN
	 Publishing, ISBN 90-72194-65-9

	 Biography
Drs. Erik van Veenendaal
(www. erikvanveenendaal)
nl) is a leading international
consultant and trainer, and a
widely recognized expert in
the area of software testing

and quality management with over 20 years
of practical testing experiences. He is the
founder of Improve Quality Services BV
(www.improveqs.nl). At EuroSTAR 1999,
2002 and 2005, he was awarded the best
tutorial presentation. In 2007 he received the
European Testing Excellence Award for his
contribution to the testing profession over
the years. He has written numerous papers
and a number of books, including “The
Testing Practitioner,” “ISTQB Foundations
of Software Testing” and “Testing according
to TMap.” Erik is also a former part-time
senior lecturer at the Eindhoven University
of Technology, vice-president of the
International Software Testing Qualifications
Board (2005–2009) and currently vice chair
of the TMMi Foundation.

Join the conversation...
If you’ve enjoyed this eBook, then come and interact with the

EuroSTAR Community! You’ll find great Software Testing content, and
great minds that are passionate about software testing.

Follow us on Twitter @esconfs
Remember to use our hash tag #esconfs when tweeting
about EuroSTAR 2011!

Become a fan of EuroSTAR on Facebook

Join our LinkedIn Group

Keep up to date with the EuroSTAR Blog

Subscribe to our Newsletter - STARtester

Check out our free Webinar Archive

w w w. e u r o s t a r c o n f e r e n c e s . c o m

The EuroSTAR Blog
All the latest testing News

Newsletter

http://www.twitter.com/esconfs
http://www.facebook.com/pages/EuroSTAR-Conferences/87674624681
http://www.linkedin.com/groupRegistration?gid=1798888
http://www.eurostarconferences.com/Blog.aspx
http://qualtech.newsweaver.ie/startester/subscriber/subscribeLink.html?subscribeBoxId=5691&mailingRecordId=8qkk3tsdzkzku1vsuh5h9r&subscriberId=&tc=17529394
http://www.eurostarconferences.com/community/member/webinar-archive.aspx

