
Published in Project Control for Software Quality, Kusters R., A Cowderoy, F. Heemstra and
E. van Veenendaal (eds), Shaker Publishing BV, Maastricht, The Netherlands, 1999

1

Improve Quality Services, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 – 2089283 • Fax 040 – 2021450 • E-mail info@improveqs.nl

Testpointanalysis: a method for test estimation

Drs. Erik P.W.M. van Veenendaal CISA and Ton Dekkers

Abstract
This document describes the test estimate preparation technique known as test point
analysis (TPA®1). TPA can be used to objectively prepare an estimate for a system test
or acceptance test. TPA covers only so-called black-box testing; an estimate for the
test activities, which precede black-box testing (i.e. white-box testing), will already
have been included in the estimate produced by function point analysis. So, while the
function point analysis productivity factor covers the white-box testing, it does not
cover system testing or acceptance testing.

TPA can also be used if the test hour allowance has been predetermined. By
performing a TPA, any risks involved can be clearly identified by comparing the
objective TPA estimate with the predetermined number of test hours. With TPA, it is
also possible to determine or calculate the relative importance of the various
functions, with a view to using the available testing time as efficiently as possible.

1. Philosophy
When formulating an estimate for a black-box test, three elements are relevant: the size
of the information system to be tested, the test strategy (selection of system
components and quality characteristics to be tested and the coverage of testing) and
the level of productivity. The first two elements together determine the volume of
testing work to be undertaken (expressed in test points). If the number of test points is
multiplied by the productivity (the amount of time needed to perform a given volume
of testing work) you get a test estimate in hours. The three elements, (size, test
strategy and productivity) are considered in more detail below.

1.1 Size
The first element to be considered is the size of the information system. For TPA
purposes, the size of an information system is determined mainly by the number of
function points [1] assigned to it. However, a number of additions or amendments need
to be made, because certain factors which have little or no influence on the number of
function points are pertinent to testing. The factors in question are the following:
• Complexity; complexity relates to the number of conditions in a function. More

conditions almost always means more test cases and therefore a greater volume of
testing work.

• Interfacing; the degree of interfacing of a function is determined by the number of
data sets maintained by a function and the number of other functions, which make
use of those data sets. Interfacing is relevant because these “other” functions will
require testing if the maintenance function is modified.

• Uniformity; it is important to consider the extent to which the structure of a
function allows it to be tested using existing or slightly modified specifications, i.e.
the extent to which the information system contains similarly structured functions.

1 TPA is registered trademark from IQUIP

Published in Project Control for Software Quality, Kusters R., A Cowderoy, F. Heemstra and
E. van Veenendaal (eds), Shaker Publishing BV, Maastricht, The Netherlands, 1999

2

Improve Quality Services, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 – 2089283 • Fax 040 – 2021450 • E-mail info@improveqs.nl

 1.2 Test strategy
 During development or maintenance, quality requirements will have been specified for
the information system. The test activities must determine the extent to which these
requirements have been satisfied. In liaison with the client, the system and/or
subsystem quality characteristics to be tested are identified and their relative
importance determined. The importance of each characteristic influences the
thoroughness of the related test activities. The more important a quality characteristic,
the more exacting and thorough the tests have to be and the greater the volume of
work. The importance of the various characteristics should be determined in
consultation with the client when the test strategy is being formulated; the information
can then be used as TPA input. In the course of the TPA process, the volume of testing
work is calculated on the basis of the test strategy.

 While certain general quality requirements apply to the information system as a whole,
there are also differences between the various functions in terms of the requirements to
be met. From the user's point of view, a function which is utilized throughout the day
may be much more important than a processing function which operates only at night.
For each function, therefore, there are two (subjective) factors that influences the
thoroughness of testing namely the user-importance of the function and the usage-
intensity. The thoroughness of testing reflects the degree of certainty or insight into
system quality sought by the customer. The user-importance and usage-intensity
factors are, of course, based on the test strategy.

 As previously indicated, the importance attached to the various quality characteristics
for testing purposes and the importance of the various subsystems and/or functions
determine the test strategy. The test strategy specifies which quality characteristics are
to be tested for each subsystem or function, and the relevant degree of coverage. TPA
and strategy determination are closely related and in practice are often performed at
the same time.

 1.3 Productivity
 Productivity is not a new concept to anyone who has produced estimates on the basis
of function points. In function point analysis, productivity is an expression of the
relationship between the number of hours necessary for a task and the measured
number of function points. In TPA, productivity relates to the time necessary to realize
one test point, as determined by the size of the information system and the test
strategy. Productivity has two components: a productivity figure and an environmental
factor. The productivity figure is based on the knowledge and skill of the test team,
and is therefore specific to the individual organization. The environmental factor
indicates the degree to which the environment influences the test activities to which the
productivity is related. Influential environmental considerations include the availability
of test tools, the amount of experience the team has with the test environment, the
quality of the test basis and the availability of testware.

Published in Project Control for Software Quality, Kusters R., A Cowderoy, F. Heemstra and
E. van Veenendaal (eds), Shaker Publishing BV, Maastricht, The Netherlands, 1999

3

Improve Quality Services, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 – 2089283 • Fax 040 – 2021450 • E-mail info@improveqs.nl

 2. Basic procedure
 The TPA procedure is illustrated below.

dynamic
test points

static
test points

total #
test points

primary
test hours

total #
test hours

productivity
factor

control factor

environmental
factor

 Figure 1: Overview Test Point Analysis procedure

 The number of test points necessary for testing the dynamic measurable quality
characteristics is calculated for each function on the basis of the number of function
points assigned to the function, the function-dependent factors (complexity,
interfacing, uniformity, user-importance and usage-intensity) and the quality
requirements regarding or test strategy for the dynamic quality characteristics. The sum
of the test points assigned to the individual functions is the number of “dynamic test
points”. The number of test points necessary for testing the static measurable quality
characteristics is calculated on the basis of the total number of function points for the
information system and the quality requirements or test strategy for the static quality
characteristics. This gives the number of static test points.

 The total number of test point is the sum of the dynamic and static test points. The
number of primary test hours can then be calculated by multiplying the total number of
test points by the calculated environmental factor and the applicable productivity
factor. The primary test hours represents the volume of work involved in the primary
testing activities, i.e. the time required for completion of the test phases Preparation,
Specification, Execution and Completion [5], [6].

 Finally, the total number of test hours is obtained by adding an allowance for
secondary test activities (Planning and Control) to the primary number of test hours.
The size of this allowance, which represents the volume of work involved in the
management activities, depends on the size of the test team and the availability of
management tools. The total number of test hours is an estimate of the time required
for all test activities, excluding formulation of the test plan.

Published in Project Control for Software Quality, Kusters R., A Cowderoy, F. Heemstra and
E. van Veenendaal (eds), Shaker Publishing BV, Maastricht, The Netherlands, 1999

4

Improve Quality Services, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 – 2089283 • Fax 040 – 2021450 • E-mail info@improveqs.nl

 3. Principles

 In TPA, the following principles apply:
• TPA is concerned only with the measurable quality characteristics (according to

ISO 9126 [3]) which fall within the scope of acceptance testing and/or system
testing. A characteristic is considered "measurable" if an appropriate test technique
is available. Sufficient practical experience should already have been acquired using
the test technique for the quality characteristic in question to allow the volume of
work to be predicted with reliability.

• The corollary of the first principle is that, using the TPA technique in its present
form, it is not possible to allow for all the quality characteristics that might be
addressed by acceptance testing and/or system testing. The characteristics for
which allowance cannot be made are those for which no pre-defined test technique
(yet) exists and those in relation to which insufficient practical experience has been
acquired. It is likely that any subsequent version of the TPA system would cover
more quality characteristics.

• TPA is in principle analyst-independent. In other words, if two different people
performed a TPA of the same information system, they should obtain the same
result. This is because clear rating definitions are provided for all factors which can
be rated on an objective basis, while all other factors are determined by the
customer.

• TPA depends on the availability of a function point count produced using Nefpug,
Ifpug or IFPA. If Nefpug or Ifpug has been used, the gross function point count is
used as the basis for analysis.

• For TPA purposes, the test team's matter knowledge is not treated as a variable
which affects the amount of work involved in the tests. Naturally, it is assumed that
the team does have a certain amount of matter knowledge. Sufficient matter
knowledge is thus a precondition, satisfaction of which has to be assured at the test
planning stage.

• TPA estimates are made on the assumption that on average one complete re-test
will be conducted. This is a weighted average based on the size of the functions,
expressed in test points.

 4. TPA, the technique in detail

 4.1 Input and starting conditions
 To conduct a TPA, one needs access to a functional design, consisting of detailed
process descriptions and a logical data model, preferably including a CRUD table. In
addition, a function point count made using the Nefpug [7], Ifpug [2] or IFPA [8]
technique is necessary. A count made using one of these three techniques can be used
as input for the TPA. However, when determining a productivity factor from the
historical data, it is important that only one of these function point-counting methods is
used; different methods should not be combined. If Nefpug or Ifpug is used, the gross
function point count is used as the basis for analysis. The choice of function point
counting technique does not affect test point calculation, but it can influence the
productivity factor. For TPA purposes, the function point count is amended as follows:

Published in Project Control for Software Quality, Kusters R., A Cowderoy, F. Heemstra and
E. van Veenendaal (eds), Shaker Publishing BV, Maastricht, The Netherlands, 1999

5

Improve Quality Services, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 – 2089283 • Fax 040 – 2021450 • E-mail info@improveqs.nl

• The function points for the various (logical) data sets defined within the function
point count are assigned to the function(s) which provide(s) the input for those
(logical) data sets.

• The function points for the various linked data sets defined within the function
point count are assigned to the function(s) which use(s) those linked data sets. This
does not apply, of course, where counts made using IFPA are concerned, since this
system does not recognize linked data sets.

• The number of function points for a clone-class FPA function is the same as the
number of points assigned to the relevant original FPA function. A clone is an FPA
function which has already been specified and/or realized within the same or
another user function in the same project.

• The number of function points for a dummy-class FPA function is if possible
calculated; otherwise, such functions are treated as being of average complexity
and the corresponding number of function points are assigned. A dummy is an FPA
function whose functionality does not need to be specified and/or realized, but
which is nevertheless available because specification and/or realization has been
undertaken outside the project.

 If no function point count is available, but one is considered desirable (for TPA
purposes), the time needed to carry out the count can be determined as follows:
 The number of logical data sets is counted and multiplied by thirty. This gives a very
rough approximation of the function point count. This approximation is divided by four
hundred to obtain the number of days necessary for the count. (note: it is generally
possible to count four hundred to five hundred function points a day.)

 4.2 Dynamic test points
 The number of dynamic test points is the sum of the test points assigned to the
individual functions. To calculate the test points for the individual functions, the
influential variables and factors are divided into two categories:
• Function-dependent (Df)
• Quality requirements relating to the dynamic quality characteristics to be tested

(Qd)

 The FPA function is used as the unit of function. The calculation of user-importance
and usage-intensity is based largely on the user function as communication medium.
The importance which users accord to a user function applies to all subsidiary FPA
functions as well.

 Function-dependent factor (Df)
 The various function dependent factors and the associated ratings are described below.
One of the ratings given must be selected; intermediate ratings are not allowed. If
insufficient information is available to enable rating of a given factor, the nominal
rating (printed bold) should be assigned.

 User-importance
 The user-significance is an expression of the importance that the user attaches to a
given function relative to the other system functions. A useful rule of thumb is that

Published in Project Control for Software Quality, Kusters R., A Cowderoy, F. Heemstra and
E. van Veenendaal (eds), Shaker Publishing BV, Maastricht, The Netherlands, 1999

6

Improve Quality Services, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 – 2089283 • Fax 040 – 2021450 • E-mail info@improveqs.nl

about 25 per cent of functions should be placed in the “high” category, 50 per cent in
the “normal” category and 25 per cent in the “low” category.
 User-importance is assigned to the functionality identified by the user. This means
assigning user-importance to the user function. The user-importance of a function
should, of course, be determined in liaison with the sponsor and other representatives
of the user organization.

 Rating:
 3 Low: the importance of the function relative to the other functions is low.
 6 Normal: the importance of the function relative to the other functions is

normal.
 12 High: the importance of the function relative to the other functions is high.

 Usage-intensity
The usage intensity has been defined as the frequency with which a certain function is
processed by the users and the size of the user group that uses the function. As with
user-importance the usage-intensity is being determined at a user-function level.

 Rating:
 2 Low: the function is only used a few times per day or per week.
 4 Normal: the function is being used a great many times per day
 12 High: the function is used continuously throughout the day.

 Interfacing
 Interfacing is an expression of the extent to which a modification in a given function
affects other parts of the system. The degree of interfacing is determined by
ascertaining first the logical data sets (LDSs) which the function in question can
modify, then the other functions which access these LDSs.
 An interface rating is assigned to the function by reference to a table in which the
numbers of LDSs affected by the function are ranged vertically and the numbers of
other functions accessing the LDSs are ranged horizontally. When working out the
number of "other functions" affected, a given function may be counted several times
over if it accesses several LDSs, all of which are maintained by the function for which
the interweave calculation is being made.

LDS\functions 1 2-5 >5
1 L L A

2-5 L A H
>5 A H H

Table 1 : Complexity table interface factor

Explanation : L : Low interfacing
A : Average interfacing
H : High interfacing

 If a function does not modify any LDSs, it is given a low interface rating. A CRUD
table is very useful for determining the degree of interfacing.

Published in Project Control for Software Quality, Kusters R., A Cowderoy, F. Heemstra and
E. van Veenendaal (eds), Shaker Publishing BV, Maastricht, The Netherlands, 1999

7

Improve Quality Services, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 – 2089283 • Fax 040 – 2021450 • E-mail info@improveqs.nl

 Rating:
 2 The degree of interfacing associated with the function is low.
 4 The degree of interfacing associated with the function is normal.
 8 The degree of interfacing associated with the function is high.

 Complexity
 The complexity of a function is determined on the basis of its algorithm. The general
structure of the algorithm may be described using pseudo code, Nassi-Shneiderman or
ordinary text. The complexity rating of the function depends on the number of
conditions in the function's algorithm. When counting the conditions, only the
processing algorithm should be considered. Conditions which are the result of database
checks, such as domain validations or physical presence checks do not count, since
these are implicitly included in the function point count.
 Composite conditions such as "IF a AND b, THEN" count double, since, without the
"AND" statement, two "IF" statements would be needed. Similarly, a "CASE"
statement with n cases counts as n-1 conditions, since replacement of the "CASE"
statement with a series of "IF" statements would result in n-1 conditions. To
summarize: count the (simple) conditions, not the operators.

 Rating:
 3 The function contains no more than five conditions.
 6 The function contains between six and eleven conditions.
 12 The function contains more than eleven conditions.

 Uniformity
 Under the following circumstances, only 60% of the test points assigned to the
function under analysis count towards the system total:
• In the case of a second occurrence of a virtually unique function: in such cases, the

test specifications can be largely reused.
• In the case of a clone function: the test specifications can be reused for clone

functions.
• In the case of a dummy function (provided that reusable test specifications have

already been drawn up for the dummy).

 A uniformity factor of 0.6 is assigned in cases of the kinds described above; otherwise
a uniformity factor of 1 is assigned. An information system may therefore contain
functions that possess a degree of uniformity for test purposes, even though they are
regarded as unique in the context of a function point analysis. In function point
analysis, the term “unique” is applied to the following:
• A function which uses a combination of data sets which is not used by any other

input function
• A function which, although it does not use a unique combination of data sets, does

use a unique processing technique (e.g. a unique method of updating a data set)

 Conversely, an information system may contain functions which, although they are
regarded as completely uniform in the context of a function point analysis and
therefore do not warrant any function points, do count in TPA, since they do need to
be tested. Clones and dummies come under this heading.

Published in Project Control for Software Quality, Kusters R., A Cowderoy, F. Heemstra and
E. van Veenendaal (eds), Shaker Publishing BV, Maastricht, The Netherlands, 1999

8

Improve Quality Services, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 – 2089283 • Fax 040 – 2021450 • E-mail info@improveqs.nl

 Method of calculation
 The Df factor is calculated by adding together the ratings for the first four function-
dependent variables (user-importance, usage-intensity, interfacing and complexity) and
dividing the sum by twenty (the nominal rating). The result should then be multiplied
by the uniformity factor. A Df factor is calculated for each function.

 Df = ((Ue + Uy + I + C)/16) * U

 Df = weighting factor for the function-dependent factors
 Ue = user-importance
 Uy = usage-intensity
 I = interfacing
 C = complexity
 U = uniformity

 Standard functions
 If, as is often the case, the function point count includes the error report function, help-
screen function and/or menu structure function, standard numbers of test points can be
assigned, as indicated in the table below.

Function FP's Ue Uy I C U Af
Error message 4 6 8 4 3 1 1,05
Help screens 4 6 8 4 3 1 1,05
Menus 4 6 8 4 3 1 1,05

Table 2: Test points standard functions

 Dynamic quality characteristics (Qd)
 The paragraphs below describe how the requirements relating to dynamic measurable
quality characteristics are taken into account in the TPA process. In this context,
distinction is made between implicitly and explicitly measurable quality characteristics.

 In TPA, four dynamic, explicitly measurable quality characteristics are recognized:
• Suitability
• Security
• Usability (regarding usability no distinction has (yet) been made in

subcharacteristics, since there are no usability testing techniques available that have
this level of accuracy.)

• Efficiency (for the same reason as mentioned at usability, efficiency is not split up
into time-behaviour and resource-utilisation)

 The importance of the requirements relating to each quality characteristic is rated; if
necessary, this is done separately for each subsystem.

 Rating:
 0 Quality requirements are not important and are therefore disregarded for test

purposes.
3 Quality requirements are relatively unimportant but do need to be taken into

Published in Project Control for Software Quality, Kusters R., A Cowderoy, F. Heemstra and
E. van Veenendaal (eds), Shaker Publishing BV, Maastricht, The Netherlands, 1999

9

Improve Quality Services, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 – 2089283 • Fax 040 – 2021450 • E-mail info@improveqs.nl

consideration for test purposes.
 4 Quality requirements are of normal importance. (This rating is generally

appropriate where the information system relates to a support process.)
 5 Quality requirements are very important. (This rating is generally appropriate

where the information system relates to a primary process.)
 6 Quality requirements are extremely important.

 Dynamic, explicitly measurable quality characteristics:
 Characteristic / Rating: 0 3 4 5 6
 Functionality (weighting 0.75)
 Security (weighting 0.05)
 Usability (weighting 0.10)
 Efficiency (weighting 0.10)

 Where black-box tests are concerned, the elementary comparative test (ECT), data
flow test (DFT), semantic test and syntactic test are available for testing suitability; the
semantic test (SEM) is available for testing security; the process cycle test (PCT), use
cases and SUMI are available for testing usability and the real-life test (RLT) is
available for testing efficiency (time-behaviour and resource-utilisation) For more
information on the various testing techniques see [4] and [5].

 The table below illustrates how the choice of test specification techniques is often
related to the rating given to the dynamic quality characteristics.

Rating : 3 4 5 6
Suitability
• Processing :

DFT and
Error

Guessing

DFT EVT and
DFT

EVT

• Screen checks : Error
guessing

sample
SEM and

Error
guessing

sample
SEM and

SYN

SEM and
sample
SYN

Security Error
Guessing

SEM
sample user

profiles

SEM
user

profiles

SEM
user

profiles and
overall

system *
Usability No

testspec's
and SUMI

Use Case or
PCT

(Ue : high)
and SUMI

Use Case or
PCT
(Ue :

average,
high)

and SUMI

Usability
laboratory

test

Efficiency The thoroughness of the RLT is variable and will
thus be determined by the rating and the amount of
hours that comes available as a consequence.

 Table 3: Test techniques versus quality characteristics

* If the security characteristic is given a rating of six, the semantic test should be used

Published in Project Control for Software Quality, Kusters R., A Cowderoy, F. Heemstra and
E. van Veenendaal (eds), Shaker Publishing BV, Maastricht, The Netherlands, 1999

10

Improve Quality Services, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 – 2089283 • Fax 040 – 2021450 • E-mail info@improveqs.nl

to examine the user profiles and associated access privileges both for the information
system to be tested and for the infrastructure or information network as a whole.

 One has to determine which quality characteristics will be tested dynamic implicitly. A
statement regarding these quality characteristic can be done by gathering data during
test execution. ISO 9126 part 2 “External Metrics” can be used as source of
information or inspiration for this [4]. For instance Time-behaviour can be explicitly
tested applying the Real-life test or implicitly by gathering data and establishing
metrics. The dynamic implicit quality characteristics need to be specified. Subsequently
the number of quality characteristics can be determined to which external metrics will
be applied. Per characteristic a rating of 0.02 is applicable in the context of Qd.

 Method of calculation (Qd)
 The rating for each dynamic, explicitly measurable quality characteristic is divided by
four (the nominal rating), then multiplied by the weighting factor. Next, the ratings
thus calculated for the five dynamic, explicitly measurable quality characteristics are
added together.

 If certain dynamic, implicitly measurable quality characteristics are to be included in the
test, the appropriate weighting (0.02 for each characteristic) should be added to the
result obtained for the dynamic, explicitly measurable quality characteristics. The figure
thus calculated is the Qd factor. Normally, a single Qd factor can be calculated for the
system as a whole. However, if different test strategies are to be used for the various
subsystems, a separate Qd factor calculation should be made for each subsystem.

 Dynamic test point formula
 The number of direct test points is the sum of the test points assigned to the individual
functions. The number of test points assigned to each function can be calculated by
entering the data so far obtained into the following formula:

 TPf = FPf * Df * Qd

 TPf = number of test points assigned to the function
 FPf = number of function points assigned to the function
 Df = weighting factor for the function-dependent factors
 Qd = weighting factor for the dynamic quality characteristics

 4.3 Static test points
 The indirect test point count depends mainly on the function point count for the system
as a whole. The indirect test point count is also influenced by the requirements
regarding the static quality characteristics to be tested (the Qi factor).

 One has to determine whether the static measurable quality characteristics are relevant
for test purposes. A static test can be carried out using a checklist. In principle all ISO
9126 quality characteristics [3] can de tested using a checklist.

 E.g. Security can therefore be measured dynamically, using a semantic test, and/or
statically, by evaluating the security measures with the support of a checklist.

Published in Project Control for Software Quality, Kusters R., A Cowderoy, F. Heemstra and
E. van Veenendaal (eds), Shaker Publishing BV, Maastricht, The Netherlands, 1999

11

Improve Quality Services, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 – 2089283 • Fax 040 – 2021450 • E-mail info@improveqs.nl

 Method of calculation (Qi)
 If a quality characteristic is tested by means of a checklist (static test), the factor Qi get
the value sixteen. For each subsequent quality characteristic to be included in the static
test, another sixteen is added to the Qi factor rating.

 4.4 Total number of test points
 The total number of test points assigned to the system as a whole is calculated by
entering the data so far obtained into the following formula:

 TP = ΣTPf + (FP * Qi) / 500

 TP = total number of test points assigned to the system as a whole
 ΣTPf = sum of the test points assigned to the individual functions (dynamic test

points)
 FP = total number of function points assigned to the system as a whole (minimum

value 500)
 Qi = weighting factor for the indirectly measurable quality characteristics

 4.5 Primary test hours
 The formula presented in subsection 5.4 gives the total number of test points assigned
to the system as a whole. This total number of test points is a measure of the volume of
the primary test activities. The primary number of test points are multiplied by the
productivity factor and the environmental factor to obtain the primary test hour count.
The primary test hour count is the number of hours required for carrying out the test
activities involved in the test life cycle phases Preparation, Specification, Execution
and Completion.

 Productivity factor
 The productivity factor indicates the number of test hours required per test point. The
higher the productivity factor, the greater the number of test hours required. The
productivity factor is a measure of the experience, knowledge and skill of the test
team. The productivity factor can vary from one organization to the next or from one
organizational unit to the next. Productivity factors can be calculated by analyzing
completed test projects; thus, historical data on such projects is necessary for
productivity factor determination.

 In practice the productivity factor has shown to have a value between 0,7 and 2.0.

 Environmental factor
 The number of test hours required for each test point is influenced not only by the
productivity factor, but also by the environmental factor. A number of environmental
variables are defined for calculation of the environmental factor. The various
environmental variables and the associated ratings are described below. Again, one of
the ratings given must be selected; intermediate ratings are not allowed. If insufficient
information is available to enable rating of a given variable, the nominal rating (printed
bold) should be assigned.

Published in Project Control for Software Quality, Kusters R., A Cowderoy, F. Heemstra and
E. van Veenendaal (eds), Shaker Publishing BV, Maastricht, The Netherlands, 1999

12

Improve Quality Services, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 – 2089283 • Fax 040 – 2021450 • E-mail info@improveqs.nl

 Test tools
 The test tools variable reflects the extent to which testing is automated, or the extent
to which automatic tools are used for testing. For the purpose of calculating this
variable, the term “test tools” covers tools that are used for the primary test activities.
The availability of test tools means that some of these activities can be performed
automatically and therefore more quickly.

 Rating:
 1 Testing involves the use of a query language such as SQL; a record and

playback tool is also being used.
 2 Testing involves the use of a query language such as SQL, but no record and

playback tool is being used.
 4 No test tools are available.

 Development testing
 The development testing variable reflects the quality of earlier testing. If the estimate
under preparation is for an acceptance test, the earlier testing will have been system
testing; if the estimate is for a system test, the earlier testing will have been white-box
testing. The quality of such development testing influences the amount of functionality
that may be require less thorough testing with less coverage and the duration of the
test activities. For, the better the development testing, the less likely one is to
encounter time-consuming problems during the test currently under consideration.

 Rating:
 2 A development testing plan is available and the test team is familiar with the

actual test cases and test results
 4 A development testing plan is available.
 8 No development testing plan is available.

 Test basis
 The test basis variable reflects the quality of the (system) documentation upon which
the test under consideration is to be based. The quality of the test basis influences the
amount of time required for the Preparation and Specification phases.

 Rating:
 3 During the system development documentation standards are being used and a
 template, in addition the inspections are organized
 6 During the system development documentation standards are being used and a
 template.
 12 The system documentation was not developed using a specific standards and a
 template.

 Development environment
 The development environment variable reflects the nature of the environment within
which the information system was realized. In this context, the degree to which the
development environment will have prevented errors and inappropriate working
methods is of particular importance. If errors of given type cannot be made, it is of
course not necessary to test for them.

Published in Project Control for Software Quality, Kusters R., A Cowderoy, F. Heemstra and
E. van Veenendaal (eds), Shaker Publishing BV, Maastricht, The Netherlands, 1999

13

Improve Quality Services, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 – 2089283 • Fax 040 – 2021450 • E-mail info@improveqs.nl

 Rating:
 2 The system was developed using a 4 GL programming language with an

integrated DBMS containing numerous constraints.
 4 The system was developed using a 4 GL programming language, possibly in
 combination with a 3 GL programming language.
 8 The system was developed using only a 3 GL programming language such as

COBOL, PASCAL or RPG.

 Test environment
 The test environment variable reflects the extent to which the test infrastructure in
which the testing is to take place has previously been tried out. In a well-tried test
infrastructure, fewer problems and delays are likely during the execution phase.

 Rating:
 1 The environment has been used for testing several times in the past.
 2 The test is to be conducted in a newly equipped environment similar to other

well-used environments within the organization.
 4 The test is to be conducted in a newly equipped environment which may be

considered experimental within the organization.

 Testware
 The testware variable reflects the extent to which the tests can be conducted using
existing testware. The availability of usable testware mainly influences the time
required for the Specification phase.

 Rating:
 1 A usable general initial data set (tables, etc.) and specified test cases are

available for the test.
 2 A usable general initial data set (tables, etc.) is available for the test.
 4 No usable testware is available.

 Method of calculation (E)
 The environmental factor (E) is calculated by adding together the ratings for the
various environmental variables (test tools, development testing, test basis,
development environment, test environment and testware), then dividing the sum by
twenty-one (the sum of the nominal ratings). Normally, one environmental factor is
worked out for the system as a whole, but separate factors can be calculated for the
individual subsystems if appropriate.

 Primary test hours formula
 The number of primary test hours is obtained by multiplying the number of test points
by the productivity factor and the environmental factor:

 PT = TP * P * E

 PT = the total number of primary test hours
 TP = the total number of test points assigned to the system as a whole
 P = the productivity factor
 E = the environmental factor

Published in Project Control for Software Quality, Kusters R., A Cowderoy, F. Heemstra and
E. van Veenendaal (eds), Shaker Publishing BV, Maastricht, The Netherlands, 1999

14

Improve Quality Services, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 – 2089283 • Fax 040 – 2021450 • E-mail info@improveqs.nl

 4.6 Total number of test hours
 Since every test process involves tasks which may be placed under the heading
“planning and control”, allowance needs to be made for such activities. The number of
primary test hour and the planning and control allowance together give the total
number of test hour.

 The standard (nominal) allowance is 10 per cent. However, the allowance may be
increased or decreased, in line with the following two factors:
• Team size
• Management tools

 Team size
 The team size factor reflects the number of people making up the team (including the
test manager and, where appropriate, the test controller).

 Rating:
 3 The team consists of no more than four people.
 6 The team consists of between five and ten people.
 12 The team consists of more than ten people.

 Planning and control tools
 The planning and control tools variable reflects the extent to which automated
resources are to be used for planning and control.

 Rating:
 2 Both an automated time registration system and an automated defect tracking

system (including CM) are available.
 4 Either an automated time registration system or an automated defect tracking

system (including CM) is available.
 8 No automated (management) systems are available.

 Method of calculation
 The planning and management percentage is obtained by adding together the ratings
for the two influential factors (team size and planning and control tools). The
allowance in hours is calculated by multiplying the primary test hour count by this
percentage. Addition of the planning and control allowance to the number of primary
test hours gives the total number of test hours.

 4.7 Breakdown between phases
 The result of a TPA is an estimate for the complete test process, excluding formulation
of the test plan. If a structured testing approach [5],[6] is used, the test process is
divided into five life cycle phases; many clients will want to see estimates for the
individual phases, as well as for the complete test process. The estimate for the
Planning and Control phase will normally be the same as the planning and control
allowance, i.e. the primary test hour count multiplied by the planning and control
percentage. The primary test hours are then divided between the Preparation,
Specification, Execution and Completion phases. The breakdown between the phases
can of course vary from one organization to another, or even from one organizational
unit to another. Suitable phase percentages can be calculated by analyzing completed

Published in Project Control for Software Quality, Kusters R., A Cowderoy, F. Heemstra and
E. van Veenendaal (eds), Shaker Publishing BV, Maastricht, The Netherlands, 1999

15

Improve Quality Services, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 – 2089283 • Fax 040 – 2021450 • E-mail info@improveqs.nl

test projects; thus, historical data on such projects is necessary for breaking down the
total estimate.

 Experience with the TPA technique suggests that the following percentages are
generally appropriate:
• Preparation: 10 percent
• Specification 40 percent
• Execution 45 percent
• Completion 5 percent

5. TPA at an early stage
A test project estimate is often needed at an early stage. Until detailed functional
specifications are obtained, however, it is not possible to determine factors such as
complexity, interfacing and the like. Nevertheless, a rough function point analysis can
often be performed on the basis of very general specifications. If a rough function point
count is available, a rough TPA can be performed as well.

For a rough TPA, a single function is defined whose size is determined by the total
(gross) function point count. All function-dependent factors (user-importance, user-
intensity, complexity, interfacing and uniformity) are usually assigned a normal value,
so that Df has a value of one. A TPA can then be carried out as described in section 5.
The environmental factor will often have to be based on assumptions; any such
assumptions should be clearly documented and stated on the test estimate when it is
presented to the client.

References

[1] Albrecht, A.J. (1984), AD/M productivity measurement and estimate validation, IBM
Guideline

[2] IFPUG (International Function Point User Group) (1994), Function Point Counting
Practices, release 4.0, IFPUG, January 1994

[3] ISO/IEC FCD 9126-1 (1998), Information technology - Software product quality – Part
1: Quality Model, International Organization of Standardization

[4} ISO/IEC PDTR 9126-2 (1997), Information technology - Software product quality -
Part 2: External metrics, International Organization of Standardization

[5] Pol, M., R. Teunissen and E. van Veenendaal (1995), Testing according to Tmap (in
Dutch), Tutein Noltenius, ‘s Hertogenbosch, The Netherlands

[6] Pol, M and E. van Veenendaal (1999), Structured Testing; an introduction to TMap,
Kluwer Bedrijfsinfomatie, Deventer, The Netherlands

[7] NEFPUG (Dutch Function Point User Group), (1991), Definitions and counting
guidelines for the appliaction of function point analysis (in Dutch), NEFPUG,
Amsterdam, May 1991

[8] Schimmel, H.P. (ed.) (1989), InterprogramFunctionPointAnalysis (IFPA) (in Dutch) ,
Samson Publishing, Alphen aan den Rijn, The Netherlands

[9] Veenendaal, E.P.W.M. van (1995), Test Point Analysis: a method for estimating the
testing effort (in Dutch), in: Computable, May 1995

Published in Project Control for Software Quality, Kusters R., A Cowderoy, F. Heemstra and
E. van Veenendaal (eds), Shaker Publishing BV, Maastricht, The Netherlands, 1999

16

Improve Quality Services, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 – 2089283 • Fax 040 – 2021450 • E-mail info@improveqs.nl

The Author
Drs. Erik P.W.M. van Veenendaal CISA has been working as a practitioner and
manager within the area of software quality for a great number of years. Within this
area he specializes in testing and is the author of several books, e.g. "Testing according
to TMap" (in Dutch) and “Software Quality from a Business Perspective”. He is a
regular speaker both at national and international testing conferences and a leading
international trainer in the field of software testing. Erik van Veenendaal is the founder
and managing director of Improve Quality Services. Improve Quality Services provides
services in the area of quality management, usability and testing.
At the Eindhoven University of Technology, Faculty of Technology Management, he is
part-time involved in lecturing and research on information management, software
quality and test management. He is on the Dutch standards institute committee for
software quality.

