
QA: news – N12

Erik van Veenendaal– Founder – Improve Quality Services Ltd.

March 2013

Forgotten tools

Of course, most often we discuss tools that are by far the most popular, such incident

management, test management, configuration management and test execution tools. In

this contribution I would like to discuss three types of tools that I have found useful

throughout my testing career, but still have a small uptake and are most often not the

tools that come to mind first when discussing test tools. I do not intend to provide a full

explanation including pro’s and con’s of these tools, the article is just meant as a

reminder to also put them to the front of your mind. I recommend to also consider these

tool types when defining a tool strategy, and to not just stick with the more common

ones.

Code coverage

Coverage tool: A tool that provides objective measures of what structural elements, e.g.

statements, branches, have been exercised by a test suite. [ISTQB]

Having once been a developer myself, I would have loved to have had such a tool back

then. As many others, I thought of some test cases (without much clue as to which parts

of the code were executed and which parts not), but if the test cases ran ok, I considered

the software that I had written to be ok as well. I believe this way of working is still

common in many, if not most,

development organizations. My first

practical experiences with coverage

tooling was in a TV project in 1996

using a non-intrusive freeware tool.

Developers loved it, it supported

them in finding out what part of the

software had not yet been covered

by the tests on a detailed level. I

believe most developers are quality-

minded like us, but we need to

provide them with the knowledge

and supporting tools to be able to

deliver quality. Coverage tools do

exactly that. Of course they can

also be used to define strict and

measurable exit criteria for

component testing. Beware, if you

go too strict too soon, otherwise resistance will become an issue. Finally, these tools can

also be used for continuous integration when having an automated test suite that runs

overnight. We can very easily track the quality of the test suite over time by measuring

its coverage (see figure 1.) Nevertheless, recent surveys [PT] show that not even 10% of

the development organizations are using a coverage tool. However, with the strong focus

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

19/1 29/4 7/8 15/11 23/2

Statement coverage

Branch coverage

Figure 1: Coverage measurements to guide test improvements

QA: news – N12

on component testing within Agile development methodologies this should change

rapidly.

Static Analysis

Static code analyzer: A tool that carries out static code analysis. The tool checks source

code, for certain properties, such as conformance to coding standards, quality metrics or

data flow anomalies. [ISTQB]

Many of the arguments that I mentioned when discussing code coverage tools also apply

to static analysis tooling. Again, if used in the right way a highly useful tool to support a

developer in producing quality software. However, most organization implement static

analysis tooling at an organizational level. This may be the preferred situation (according

to theory and vendors), but is not always a feasible one. Organizations then end up in

endless discussion to get full agreement between developers on style guides, coding

standards etc. And what about applying the new style guide and coding standards

retrospectively to all the legacy software that is already in place and will be there for at

least the next decade? Not without reason is static analysis in the top 4 for shelfware

tooling [PT]. If implementing it in full on an organizational level is asking too much,

don’t do it!! However, this does not mean that static analysis tools cannot have added

value. Perhaps we should keep it much more simple, focus on the twenty or so coding

rules we all agree on. Define a minimum set of software metrics with criteria we all

agree on such as cyclomatic complexity, number of nested levels and comment

frequency, and provide the tool to the developers to start using. I have seen great

results in producing more maintainable and more reliable software by applying static

analysis tools in a just a limited way. Perhaps the 80/20 also applies here. Remember

research has taught us that 40% percent of the failures in the field could have been

prevented if static analysis was used. In practice important quality attributes such

maintainability and reliability are often forgotten in Agile projects; a static analysis tool

that provides support in checking for compliance with the most critical coding rules and

software metrics will have added value here as well.

Test design

Test design tool: A tool that supports the test design activity by generating test inputs

from a specification that may be held in a CASE tool repository, e.g. requirements

management tool, from specified test conditions held in the tool itself, or from code.

[ISTQB]

In many testing courses much attention is given to test design techniques, including

exploratory testing. Of course it is important to teach people how to design test cases, to

some extent it’s the heart of testing. However, recently I read a survey stating that

approximately only 50% of the testers explicitly apply test design techniques and around

25% percent apply more than one technique. (Food for thought!) In nearly every test

design technique there are steps that would benefit from being, at least partly,

automated. Most large test tool providers seem to have no idea what test design

techniques are and would benefit largely

from an ISTQB Foundation Level course.

As a result there is still limited

availability regarding test design tools,

Figure 2: Decision table tool screenshot

QA: news – N12

hence the low uptake. This is a paradox since we perceive it as being a very important

part of testing, but tool focus is on test execution, test management and incident

management tooling. However, if you start searching you will come across all kinds of

easy-to-use tools that support test design techniques. These are not professional tools

(there are one or two exceptions), but tools developed by someone enthusiastic about

testing. In The Netherlands we have a tool called BTWIN which is in fact not more than

an advanced Excel sheet, but does support decision table testing (including collapsed

tables) perfectly (figure 2). I’m also using a small tool that supports me whenever I have

a difficult set of (business) rules that require testing using condition determination

coverage; many of the readers are probably familiar with the freeware CTE XL tool that

supports classification trees (figure 3), etc. None of these are spectacular tools, but they

should be in every tester’s workbench as they make the application of test design

techniques easier and thus eventually will lead to a larger uptake.

Figure 3: Classification Tree Editor screenshot

Individuals over Processes

It was only when writing this column it struck me that I was making a case for simple

easy-to-use tools over full-blown professional tools. Don’t get me wrong, full-blown

professional tools offer great support but sometimes there are alternatives depending on

the maturity level and domain of the organization, development processes in use etc. In

fact in my opinion a test tool strategy can be a combination of both, one doesn’t exclude

the other. Providing engineers (developers/testers) with a personal tool workbench

consisting of easy-to-use and highly supporting tools allows you to get the best out of

people. To some extent I’m re-stating “Individuals over processes”. Does that sound

familiar?

[ISTQB] E. van Veenendaal (ed.) (2010), Standard Glossary of Terms Used in Software

Testing Version 2.1, International Software Testing Qualifications Board

[PT] E. Van Veenendaal, Tools and the last six years, in: Professional Tester, November

2010

QA: news – N12

For more information

Erik van Veenendaal (www.erikvanveenendaal.nl) is a leading international consultant

and trainer, and a widely recognized expert in the area of software testing and quality

management with over 20 years of practical testing experiences. He is the founder of

Improve Quality Services Ltd. (www.improveqs.nl). In 2007 he received the European

Testing Excellence Award for his contribution to the testing profession over the years. He

has been working as a test manager and consultant in various domains for more than 20

years. He has written numerous papers and a number of books, including “The Little

TMMi”, “ISTQB Foundations of Software Testing” and “Testing according to TMap” and

recently published “Test Maturity Model integration – Guidelines for Test Process

Improvement”. Erik is also a former part-time senior lecturer at the Eindhoven University

of Technology, vice-president of the International Software Testing Qualifications Board

(2005–2009) and currently board member of the TMMi Foundation.

Erik Van Veenendaal – Founder – Improve Quality Services Ltd.

eve@improveqs.nl

http://www.erikvanveenedaal.nl

follow Erik on twitter @ErikvVeenendaal

http://www.erikvanveenedaal.nl/

