Published in:Conference proceedings European Software Quality Wéekober 2000

Measuring software product quality during testing
Rob Hendriks, Robert van Vonderen and Erik van Veenendaal

Quality requirements of software products are often described in vague
and broad terms. As a consequence it makes it difficult for software
engineers to determine how quality influences their assignment and it is
almost impossible for test engineers to evaluate the quality of the software
product as no concrete and quantitative reference, of what quality in that
context means, exists. This paper describes a possible way to define and
measure software product quality. The authors have applied this method
during the development of copier/printer controller software at Océ
Technologies B.V., a Dutch developer and manufacturer of copying and
printing equipment.

Context

In 1997, Océ Technologies started the development of a new line of
copier/printer controllers, to be used in a new family of monochrome high-
volume hybrid copier/printers. In April 1999 this development entered the
engineering phase. The engineering of the software for this controller line
takes place on three sites, of which two are in The Netherlands and one is
in France. Approximately 60 software engineers are involved in the
development of this software, hereafter referred to as the ‘controller
software’. The controller software is developed in an incremental fashion,
with each development cycle conforming to the V-model. Each iteration of
such a development cycle takes between 3 and 5 months.

At the start of the engineering phase a test team was formed with the
assignment to verify correct functional behaviour and to determine product
guality of the controller software. One of the main problems that occurred
for the test team was the fact that the required quality level of the controller
software was not specified. The only quality requirements available
referred to the copier/printer product as a whole and not particular to it's
software components. Those requirements were however easily
measurable and easy to understand. Examples are the mean number of
copies between failures (MCBF, which pertain to all system errors) and the
average copies per repair (ACPR, which is the number of copies made
between visits of a service technician).

The objective of the test team was to get a clear baseline of the quality
requirements before the testing phase would actually start. Therefore a
guality model had to be found that could help in defining and measuring
software product quality. This model was found in 1ISO9126 (ISO/IEC 9126-

Improve Quality Services BV, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 — 2089283 « Fax 040 — 2021450 « E-mail info@improveqs.nl



Published in:Conference proceedings European Software Quality Wéekober 2000

1:2000). In this ISO standard six quality characteristics are defined, which
help in decomposing quality in manageable parts. The quality
characteristics defined in the 1ISO9126 standard are functionality, reliability,
usability, efficiency, maintainability and portability. To have a more detailed
description these quality characteristics are divided into 27 sub-
characteristics (Figure 1) in total.

1ISO9126

Quality
characteristics

Functionality Reliability Usability Efficiency Maintainability Portability
Suitability - Analysability -
Accuracy Maturity Understand_a_blllty . . Changeability Adaptab!l!ty

. Learnability Time behaviour ™ Installability

Interoperability Fault tolerance L A Stability B

. " Operability Resource utilisation P Co-existence
Security Recoverability . - ’ Testability i~
. . o . Attractiveness Efficiency compliance RS Replaceability
Functionality Reliability compliance . : Maintainability o :
- Usability compliance " Portability compliance
compliance compliance

Figure 1 1S09126 quality characteristics overview
Selection of product quality characteristics

Not all quality characteristics are of equal importance to the software
product. Portability might be unimportant when the development aims at a
dedicated platform and maintainability might not be an issue when it's a
throwaway product. The important quality (sub-)characteristics need
therefore be selected. This selection can be made by interviewing key
persons in- and outside the project. Inside the project one can think of the
product manager, the project manager or the software architect. Outside
the project the various types of users are important. Copier users are not
only limited to the person operating the copier, often forgotten are e.g. the
service technician, the system administrator, etc.

The quality characteristics as defined by the ISO9126 standard are not
always easy to interpret. What is meant by maintainability, or even worse
usability? It's difficult to express these quality characteristics in an
unambiguous way. As it will be hard to understand for IT professionals it
will be even harder for users of the copier, who, in general, have no or
limited knowledge of software. Most of the users don’t even perceive that
the product contains software. It will therefore be difficult to determine
those quality characteristics that are important for the software component

Improve Quality Services BV, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 — 2089283 « Fax 040 — 2021450 « E-mail info@improveqs.nl



Published in:Conference proceedings European Software Quality Wéekober 2000

of the product just by asking “Do you think usability is important?” The
persons interviewed have their own definition of the characteristics and
their own view of what the system should do and therefore what is
important.

To overcome the problems mentioned above a questionnaire based
method has been developed in the European SPACE-UFO project, funded
by the European Union, and further elaborated by Improve Quality
Services B.V.. This gquestionnaire consists of a number of questions about
general product characteristics. These product characteristics are
understandable for all interviewed persons. Instead of asking whether
usability is important one asks questions about the characteristics of the
users that influence the usability requirements, e.g. the number of different
users, their experience with the product (or a similar one) and their
educational level. Similar questions are asked for the other quality
characteristics. The answers given are used to deduct the most relevant
guality (sub-)characteristics. A fragment of the questionnaire is included in
appendix A. This appendix also shows the related quality (sub-)
characteristics.

Within the project 4 key-persons were selected and also 3 representatives
of the different types of users were selected. Thus 7 persons were
interviewed, each having their typical view on the copier/printer product.
From the answers given a ranking for the product quality (sub-)
characteristics could be deducted. A score from 1 to 5 was given, with 1
being unimportant and 5 most important. The results then were averaged
for all respondents. This resulted in the score shown in table 1.

Score =1 Score =2 Score =3 Score =4 Score =5

Functionality X

Reliability X

Usability X

Efficiency X

Maintainability X

Portability X

Table 1 Score per quality characteristic

As can be seen from the results of the questionnaire, the quality
characteristics functionality, reliability and maintainability were considered
to be important for the controller software. This is explainable from the type
of copier the project is developing: it is expected to run in a highly
professional document production environment, where the uptime (to be
expressed in ‘reliability’ and ‘maintainability’) is of utmost importance.

Also, the copier/printer will be the successor product of an analogue high-

Improve Quality Services BV, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 — 2089283 « Fax 040 — 2021450 « E-mail info@improveqs.nl



Published in:Conference proceedings European Software Quality Wéekober 2000

volume copier model, where a clear functionality demand (being
compatible with existing products as well as providing an extension) is
expressed. Usability also scores high but it has been decided not to take it
into account for testing the controller software. The reason for this is that
usability is considered to be a property of the user interface, which is not
part of the controller software development.

Given this, the test team decided to focus on three quality characteristics
(functionality, reliability and maintainability) primarily, and to develop
guality metrics for these quality characteristics.

Definition of quality metrics

When the relevant quality (sub-)characteristics have been determined, one
should think about how to measure quality. The 1ISO9126 standard defines,
in the technical reports ISO 9126-2 (external metrics) and ISO 9126-3
(internal metrics), a number of metrics per quality characteristic that can be
used for measurement.

A selection of metrics can be made and, when necessary, extended with
self-defined metrics. The latter only on condition that the metrics are
motivated by defining the goal and the attribute that will be measured.

For each quality sub-characteristic, a selection of metrics from the
1ISO9126 standard parts 2 and 3 (ISO/IEC 9126-2 and ISO/IEC 9126-3)
and from the product requirements was made (e.g. Mean Copies Between
Failures). The selection of metrics to be used was mainly based on the fact
whether it was possible and easy to measure them, mainly because this
was the first experiment with measuring quality characteristics.

Most of the requirements could be used directly from the ISO technical
reports and some of them had to be fine-tuned to the project’s definitions.
An example is the ISO9126 metric Mean Time Between Failures (MTBF).
This metric is often used to give an indication of the maturity of the system.
For copier/printers the maturity is often indicated by means of the metric
Mean Copies Between Failures (MCBF). Therefore a slight change in the
metrics could be desirable. Furthermore the product requirements often
include quality statements applicable to the product as a whole. As only
the controller software was taken into account, these quality aspects
needed to be translated for the controller software. E.g. the MCBF is
higher for the controller software than for the product, because only
failures caused by the controller software should be taken into account.
Paper jams are not important when evaluating the maturity of the software.
In total 16 metrics were defined, of which only 1 was defined additional to
the internal and external metrics provided in the ISO technical reports. The

Improve Quality Services BV, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 — 2089283 « Fax 040 — 2021450 « E-mail info@improveqs.nl



Published in:Conference proceedings European Software Quality Wéekober 2000

availability of design documentation was considered to be a good
indication of the maintainability. Therefore a metric was added to verify the
amount of design documentation that was available versus the amount of
design documentation planned. Examples of the metrics defined can be
found in table 2.

Quality

characteristic

Sub-
characteristic

Metric

Purpose

Functionality Suitability Functional implementation How many functions have been
completeness: implemented in relation to the
Number of missing functions number of functions specified in
detected during system testing / the requirement specifications?
Number of functions described in
requirement specifications.

Reliability Maturity Mean Copies Between Failures: How frequent are the defects of
Total number of copies during the controller software in
system testing / Number of operation?
defects, caused by controller
software, detected during
operation time.

Maintainability Analysability Availability of design What's the proportion of design
documentation: documentation available?
Available (and approved) design
documentation (i.e. SW
architecture, top-level design,
analysis views, design views and
interface specifications) /

Identified design documentation.

Table 2 Examples of metrics defined

Measurement

It was decided that a hypothetical baseline had to be defined before
starting the actual measurement. Our goal was not to measure relative
improvement with each test-cycle, but to compare the measured quality
against an absolute goal, which was to be reached before the product
could be released. Defining a baseline in advance forces people to start
discussion when quality targets are not met. If no baseline is defined one is
tempted to accept the quality as is, because no reference exists. The
product is considered to be ‘good enough’.

This baseline was defined by asking a number of experienced people
within the project and comparable software projects for an estimate on
each metric. These estimates were then averaged. Each estimate was
requested to be the ‘minimum but sufficient level’ for release. E.g., the
metric Mean Copies Between Failures was defined to be 100000. This
holds that only 1 failure, attributable to the controller software, may occur

every 100000 copies.

Improve Quality Services BV, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 — 2089283 « Fax 040 — 2021450 « E-mail info@improveqs.nl



Published in:Conference proceedings European Software Quality Wéekober 2000

Decided was to measure all metrics (when applicable) during the system
test phase of each incremental development cycle. The result of each
development cycle could thus be scored against the defined baseline. In
this way, both the improvements per development cycle, as well as the
discrepancy with the ‘minimum but sufficient level’ could be depicted and
reacted upon.

Collection of the metric data during the system test phases implied that
some thorough administration was necessary during the test execution.
Besides the defects found it was important to administer e.g. the number of
copies made, the total down time of the copier/printer and the number of
failures successfully restored by the system itself. It was important to
clearly instruct the test engineers on what data should be recorded,
otherwise important information to compute the metrics could be missing.

After each system test phase the measured values needed to be evaluated
to see whether the baseline values defined at the start were still correct.
Where necessary the baseline values could be modified, but then at least
the discussion took place on the desired quality level. Project management
should always have approved changing a baseline.

Real life experience

Until the moment of writing this paper, 3 development cycles have been
tested and scored. For one increment, an extra system test cycle was
added, leading to a fourth measurement (2 patch). Some results of this
increment are presented in the table below.

Quality- Sub- Base- Value Value Value
characteristic | characteristic line C1 C2 C2
patch
Functionality Suitability Functional implementation 0.90 0.91 1.0 1.0 0.82
completeness
Functional implementation 0.80 0.45 0.80 0.84 0.61
correctness
Reliability Maturity Defect detection 0.75 0.46 0.63 0.63 1.08
Mean copies between 100000 n.a. 93 175 4880
failures
Test completeness 0.90 0.75 0.78 0.33 0.92
Recoverability Mean down time 10 min. n.a. 5 min. 5 min. 5 min.

Table 3 Measurements results

Improve Quality Services BV, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 — 2089283 « Fax 040 — 2021450 « E-mail info@improveqs.nl



Published in:Conference proceedings European Software Quality Wéekober 2000

From the table can be seen that not all metrics were measured for all
increments. This is caused by the incremental development methodology
used within the project, where it appeared to be impossible to measure e.g.
‘Restorability’ on release 1, since this functionality was not yet present.

The mean copies between failures is far below the baseline defined. Still
this baseline is not adjusted. The low number for MCBF is caused mainly
by the fact that the controller software was not yet robust for failures in the
scanner or printer. E.g. a paper jam also resulted in a failure in the
controller software. Release 3 was robust for paper jam and one can see
that the MCBF increased tremendously.

Interesting to note are the measurements on release 2 patch compared
with release 2. The actual use of the software resulting from release 2 was
hindered by major instability and performance problems. These problems
were resolved, after which measurement 2 patch took place. Although the
difference between the metrics of release 2 and release 2 patch is only
relatively small (only 9 major defects were solved, approx. 5% of the total
amount of defects solved), the users perceived release 2 patch as a much
‘better’ system. This example shows that the metrics and values indicated
in the previous table should be carefully interpreted. When the system only
shows a few critical defects in the most used part of the system this system
will be of an unacceptable quality level, but the metrics show otherwise.
The severity of a defect and its location in the system is not taken into
account. So besides the metrics also an evaluation based on common
sense has to be made.

For release C3 one can see that the defect detection rate currently is
higher than 1, which means that more defects have been found than
initially expected. The calculation for the defects expected to be found
might be incorrect, which has to be investigated. Literature and metrics of
the own organisation were used to derive the number of defects expected
to be found.

Conclusion and final remarks

We have now been measuring software quality metrics for less than a year.
With more future releases planned (including more extended test periods),
our metrics will improve, to the point where we can more clearly use them
to set development priorities.

The metrics currently only are used to see what the quality level of the
controller software is. The next step will be to submit changes in the
development process to improve the quality of the software itself and the
process. E.qg. if the defect detection rate is lower than expected, as can be

Improve Quality Services BV, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 — 2089283 « Fax 040 — 2021450 « E-mail info@improveqs.nl



Published in:Conference proceedings European Software Quality Wéekober 2000

seen for releases C1 to C2 patch, but the test completeness is quite high
(75% - 78%) it might be necessary to evaluate the effectiveness of the test
process. It's of course also possible that the engineering team makes
fewer errors as expected.

Furthermore it's still unknown what will happen if the metrics show an
insufficient quality level, but the release date has come. How will the
organisation react on this and how much importance will it attach to the
metrics? This is what still has to be found out.

Up till now the reporting on quality has been received well within the
project, both for people involved in the quality model development and
those only receiving the test results. The statements on product quality are
now based on more than the number of defects and the feeling one has.
Besides in the controller software development this method will now also
be lifted to project level in order to make statements on the quality level of
the copier/printer product as a whole.

As test and quality engineers we’re very positive about the 1ISO9126
approach for defining quality and the questionnaire based method. It gave
us a way of defining and reporting product quality in a clear and, quite,
unambiguous manner. We’ve learned a lot and will continue the
measurements for the remaining of the project and intend to also use it in
future projects.

Authors information

Rob Hendriks Robert van Vonderen
Improve Quality Services B.V. Océ Technologies B.V.
Waalreseweg 17 P.O. Box 101

5554 HA Valkenswaard 5900 MA Venlo

The Netherlands The Netherlands
E-mail: rhe@improvegs.nl E-mail: lvwvo@oce.nl

Improve Quality Services BV, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 — 2089283 « Fax 040 — 2021450 « E-mail info@improveqs.nl



Published in:Conference proceedings European Software Quality Wéekober 2000

References

ISO/IEC 9126-1:2000, Information technology — Software product quality —
Part 1: Quality model, International Organization for Standardization.

ISO/IEC 9126-2:1999, Information technology — Software product quality —
Part 2: External metrics, International Organization for Standardization.

ISO/IEC 9126-3:2000, Information technology — Software product quality —
Part 3: Internal metrics, International Organization for Standardization.

Solingen R. van & E. Berghout (1999), The goal/question/metric method, a
practical method for quality improvement of software development,
McGraw-Hill, UK, ISBN 007-709553-7.

Trienekens J.J.M. and E.P.W.M. van Veenendaal (1997), Software Quality
from a business perspective, Kluwer Bedrijfsinformatie, Deventer, The
Netherlands, ISBN 90-267-2631-7.

Veenendaal, E.P.W.M. van & J. McMullan (eds.) (1997), Achieving
Software Product Quality, UTN Publishers, ‘s-Hertogenbosch, The
Netherlands, ISBN 90-72194-52-7.

Improve Quality Services BV, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 — 2089283 « Fax 040 — 2021450 « E-mail info@improveqs.nl



Published in:Conference proceedings European Software Quality Wéekober 2000

Appendix A Example product quality characteristics
questionnaire

This appendix contains some of the questions of the product quality
characteristics questionnaire. For each question the related quality sub-
characteristics are indicated.

Process related questions:

What kind of market type is the product oriented towards?

1. Business market

2. Consumer market

(Related to suitability, interoperability, learnability, resource utilisation and
time behaviour)

What is the geografic market target?

1. Local

2. Global

(Related to suitability, interoperability, learnability, resource utilisation and
time behaviour)

What is the number of products to be sold in a certain market area?
1. 1-1000

2. 1000-10000

3. More than 10000

(Related to suitability and maturity)

User related questions:

What is the average experience of the recognized user groups with regard
to the product?

1. More than one year of experience

2. Less than one year of experience

3. No experience

(Related to understandability)

What is the average age of the users?

1. Under 25

2. 25-40

3. Older than 40

(Related to learnability and attractiveness)

Improve Quality Services BV, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 — 2089283 « Fax 040 — 2021450 « E-mail info@improveqs.nl

10



Published in:Conference proceedings European Software Quality Wéekober 2000

Software product related questions:

Are there any alternatives to carry on with the activities when the software
fails?

1. Yes

2. No

(Related to reliability)

Does the product perform actions without the user intervention?
1. Yes

2. No

(Related to understandability, learnability and operability)

Improve Quality Services BV, Waalreseweg 17, 5554 HA Valkenswaard, The Netherlands
Tel 040 — 2089283 « Fax 040 — 2021450 « E-mail info@improveqs.nl

11



