
68	 BETTER SOFTWARE	 JANUARY/FEBRUARY 2011	 www.StickyMinds.com

R
isk-based testing is the foundation of
almost every testing activity, as we strive
to strike a balance between product quality and
tight deadlines. Whether you are involved in a
traditional waterfall or V-model environment

or you’re applying agile development methodologies, estab-
lishing testing priorities is always a challenge. Of course, risk-
based testing should be driven by business objectives. Testers
do not determine business risk—the products’ stakeholders
do. It is our responsibility to provide information on product
and project risk status to enable stakeholders to make better
decisions.

These ten essential ideas will improve your risk-based testing.

Start risk-analysis by identifying the full set of
stakeholders

Since stakeholders provide the essential information for
the identification and analysis of risks, having the right set of
stakeholders is essential. Stakeholders include those who are
responsible for the new system (e.g., product owner, project
manager), those who are affected when the product doesn’t
function correctly (e.g., maintenance, help desk), and those
who use the system in their work (e.g., end-users, manage-
ment). In Utopia, thorough stakeholder identification has
already taken place during the requirements phase. In our
world, stakeholder identification may need to be done as part

IS
TO

CK
PH

O
TO

of the risk-analysis process. Remember, a forgotten stake-
holder means forgotten product risks.

State the product risks in the language of the business
Communication is vital to a successful project. Product

risks should be stated in such a way that they are understood
by the business stakeholders. It should be clear to them what it
means if a risk becomes reality. Product risks will only receive
the full attention of the stakeholders when they understand all
the consequences. Often, when too few business people are
involved in a product-risk analysis, the result is a list of risks
that has no meaning to them. Specify product risks explicitly
in terms of both the failure and the resulting negative impact.

Recognize that impact and likelihood are different
Some risk analysis techniques calculate the level of risk by

multiplying impact by likelihood to create a risk level. An ex-
tremely high impact risk (e.g., safety) with a low likelihood
may then receive too little attention. Consider table 1, where
impact and likelihood are both rated on a scale from 1 to 5.

Table 1

	 www.StickyMinds.com	 JANUARY/FEBRUARY 2011	 BETTER SOFTWARE 	 69

Although the risk level for A and B is the same, the na-
ture of risk A and risk B is very different. Just looking at the
risk level (10) and sorting the product risk list by risk level is
very dangerous. Vital information is lost using this approach.
Impact usually relates to business factors and business risks;
likelihood relates to technical factors and technical risks.
These types of risks are by nature very different and should
have different mitigation approaches.

Visualize the results of
the product-risk analysis
A picture is often worth
more than a thousand
words. Presenting risk-
assessment results in a dia-
gram is usually much more
effective than in tabular
form with many numbers.
The table becomes indeci-
pherable very quickly, and
often stakeholders lose
themselves in a number-

based discussion. Presenting the results of a risk analysis in
a matrix format, as shown in figure 1—where impact is on
the horizontal axis, likelihood is on the vertical axis, and
the four squares each represent a level and type of risk—

generally provides a much better basis for discussing the
product risks [1].

Consider both functional and nonfunctional risks
Some requirements documents omit nonfunctional re-

quirements. When nonfunctional quality attributes such as
performance, reliability, and usability are not well speci-
fied, the product built from those requirements may not
satisfy stakeholder needs. When nonfunctional risks are
forgotten, additional problems can arise. Standard check-
lists for nonfunctional risks are available [2, 3], but don’t
go overboard and lose yourself in a detailed list of non-
functional quality attributes that no one understands.
Focus on a small set of nonfunctional attributes that are
important and that you are able to test.

Define a differentiated, risk-based test approach
Product risks that are more critical than others should

be tested differently, with greater coverage and stricter exit
criteria. This could involve using different test-design tech-
niques, performing reviews, doing additional regression
testing, and having users perform tests that utilize their
knowledge. This differentiated, risk-based test approach
should be clearly defined early in the testing process to allow
for effective allocation of test resources. If such an approach
is not explicitly taken and it is up to the individual tester to

Figure 1

70	 BETTER SOFTWARE	 JANUARY/FEBRUARY 2011	 www.StickyMinds.com

decide how much testing is enough to cover a product risk, the whole structure
of risk-based testing falls apart.

Report against the identified product risks
Even with an effective product-risk-analysis process, many test reports remain

defect based. Test reports should be organized around the product risks that have
been identified. This allows stakeholders to make an informed decision regarding
product release. In practice, detailed defect-based reports are often not meaningful
to business stakeholders. A short, focused test report in a stakeholder’s language
provides real value. This report should define the product risks, the planned test
coverage, the actual test coverage, and the risks mitigated.

Choose the product-risk-analysis method that meets your needs
Many methods of product-risk analysis are extremely thorough but take a sub-

stantial amount of time. This may be appropriate when testing a safety-critical
system. In an agile context, risk-based testing is still important and may be more
important due to strict delivery deadlines. However, the product-risk analysis
should be lightweight and very focused. A simple brainstorm session at the begin-
ning of an increment may suffice. In general, don’t make the analysis more com-
plex than necessary. When defining a process for product-risk analysis or choosing
a method, keep in mind why you are doing it and what you are trying to achieve.
The result that you are trying to achieve—not the process—should be leading.

Revisit product risks on a regular basis
Many testers perform one product-risk analysis at the beginning of a project

and then act as though risks don’t change throughout the project. Remember, the
product-risk identification and analysis are based on stakeholders’ perceptions
and expectations. These will almost always change over time. Early testing will re-
veal some new risks while mitigating others. Evolving requirements usually means
evolving product risks. It pays to revisit the risk analysis on a periodic basis, at
least at every major milestone. This will make testing more effective by addressing
the newly identified product risks and more efficient by not wasting precious time
testing for risks that have become less important.

Establish clear risk ownership and responsibilities
In many organizations, testers identify and analyze risks. This is wrong. Tes-

ters are not the owners of risk. Our responsibility is to facilitate the risk-anal-
ysis process and inform our stakeholders of the status of product risks. When
stakeholders are asked to identify product risks and indicate the level of testing to
be performed, they become aware that they are the deciding factor. If the stake-
holders miss a product risk, it is their—not the tester’s—responsibility. It is impor-
tant to keep this in mind when faced with a stakeholder’s resistance to becoming
the risk owner.

Doing a thorough product-risk analysis is easier said than done. Some text
books make product-risk analysis much too theoretical and difficult, others do
not really address the issue and only skim the surface. These ten practices should
make you aware of some of the most critical issues that need to be dealt with in
the real world when doing a product-risk analysis. Remember, without product-
risk analysis, a tester may develop great test cases—e.g., using formal test design
techniques—but the test cases may well be directed toward the less critical test
items and features. {end}

eve@improveqs.nl

For more on the following topic go to
www.StickyMinds.com/bettersoftware.
n	 References

Go Live with
Con�idence!

The Load Testing Tool
for all your

web applications

www.neotys.com
More details and free trial on

Support for HTTP, AJAX, Flex,
GWT, Silverlight, Java serializa-
tion, Push technologies,...

NeoLoad, a load and stress
testing solution for web applica-
tions, improves testing effec-
tiveness. It enables faster
tests, provides pertinent analy-
sis and supports the newest
technologies.

Test your Web application’s
performance easily and ensure
trouble-free deployment thanks
to NeoLoad!

